Deletion of atoR from Streptococcus pyogenes Results in Hypervirulence in a Mouse Model of Sepsis and is LuxS Independent


Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology


ISSN: 1733-1331
eISSN: 2544-4646





Volume / Issue / page

Related articles

VOLUME 66 , ISSUE 1 (March 2017) > List of articles

Deletion of atoR from Streptococcus pyogenes Results in Hypervirulence in a Mouse Model of Sepsis and is LuxS Independent

Izabela Sitkiewicz * / James M. Musser

Keywords : Streptococcus pyogenes, ato, host-pathogen interactions, short chain fatty acid synthesis, virulence factors

Citation Information : Polish Journal of Microbiology. Volume 66, Issue 1, Pages 17-24, DOI:

License : (CC BY-NC-ND 4.0)

Received Date : 17-November-2016 / Accepted: 27-January-2017 / Published Online: 30-March-2017



Group A Streptococcus (GAS) is a Gram-positive human pathogen that causes a variety of diseases ranging from pharyngitis to life-threaten­ing streptococcal toxic shock syndrome. Recently, several global gene expression analyses have yielded extensive new information regarding the regulation of genes encoding known and putative virulence factors in GAS. A microarray analysis found that transcription of the GAS gene M5005_Spy_1343 was significantly increased in response to interaction with human polymorphonuclear leukocytes. M5005_Spy_1343 is predicted to encode a member of the LysR family of transcriptional regulators and is located upstream of a putative operon containing six genes. Five of these genes have sequence similarity to genes involved in short-chain fatty acid metabolism, whereas the sixth gene (luxS) is found in many bacterial species and is involved in quorum sensing. Unexpectedly, inactivation of the M5005_Spy_1343 gene resultedin hypervirulence in an intraperitoneal mouse model of infection. Increased virulence was not due to changes in luxS gene expression.We postulate that short-chain fatty acid metabolism is involved in GAS pathogenesis.

Content not available PDF Share



Banks D.J., S.F. Porcella, K.D. Barbian, S.B. Beres, L.E. Philips,J.M. Voyich, F.R. DeLeo, J.M. Martin, G.A. Somerville andJ.M. Musser. 2004. Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. J. Infect. Dis. 190: 727–738.


Durant J.A., V.K. Lowry, D.J. Nisbet, L.H. Stanker, D.E. Corrier and S.C. Ricke. 1999. Short-chain fatty acids affect cell-association and invasion of HEp-2 cells by Salmonella typhimurium. J. Environ. Sci. Health. B. 34: 1083–1099.


Eftimiadi C., M. Tonetti, A. Cavallero, O. Sacco and G.A. Rossi. 1990. Short-chain fatty acids produced by anaerobic bacteria inhibit phagocytosis by human lung phagocytes. J. Infect. Dis. 161: 138–142.


El-Gedaily A., G. Paesold, C.Y. Chen, D.G. Guiney and M. Krause. 1997. Plasmid virulence gene expression induced by short-chain fatty acids in Salmonella dublin: identification of rpoS-dependent and rpo-S-independent mechanisms. J. Bacteriol. 179: 1409–1412.


Ferretti J.J., W.M. McShan, D. Ajdic, D.J. Savic, G. Savic, K. Lyon, C. Primeaux, S. Sezate, A.N. Suvorov, S. Kenton and others. 2001. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 98: 4658–4663.


Graham M.R., L.M. Smoot, C.A. Migliaccio, K. Virtaneva,D.E. Sturdevant, S.F. Porcella, M.J. Federle, G.J. Adams, J.R. Scott and J.M. Musser. 2002. Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc. Natl. Acad. Sci. USA 99: 13855–13860.


Graham M.R., K. Virtaneva, S.F. Porcella, W.T. Barry, B.B. Gowen, C.R. Johnson, F.A. Wright and J.M. Musser. 2005. Group A Streptococcus transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival strategies. Am. J. Pathol. 166: 455–465.


Jenkins L.S. and W.D. Nunn. 1987a. Genetic and molecular characterization of the genes involved in short-chain fatty acid degradation in Escherichia coli: the ato system. J. Bacteriol. 169: 42–52.


Jenkins L.S. and W.D. Nunn. 1987b. Regulation of the ato operon by the atoC gene in Escherichia coli. J. Bacteriol. 169: 2096–2102.


Jimenez J.C. and M.J. Federle. 2014. Quorum sensing in group A Streptococcus. Front. Cell Infect. Microbiol. 4: 127.


Klenk M., D. Koczan, R. Guthke, M. Nakata, H.J. Thiesen,A. Podbielski and B. Kreikemeyer. 2005. Global epithelial cell transcriptional responses reveal Streptococcus pyogenes Fas regulator activity association with bacterial aggressiveness. Cell Microbiol. 7: 1237–1250.


Kurita-Ochiai T., K. Fukushima and K. Ochiai. 1995. Volatile fatty acids, metabolic by-products of periodontopathic bacteria, inhibit lymphocyte proliferation and cytokine production. J. Dent. Res. 74: 1367–1373.


Kurita-Ochiai T., K. Ochiai, N. Suzuki, K. Otsuka and K. Fukushima. 2002. Human gingival fibroblasts rescue butyric acid-induced T-cell apoptosis. Infect. Immun. 70: 2361–2367.


Lawhon S.D., R. Maurer, M. Suyemoto and C. Altier. 2002. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol. Microbiol. 46: 1451–1464.


Lukomski S., N.P. Hoe, I. Abdi, J. Rurangirwa, P. Kordari, M. Liu, S.J. Dou, G.G. Adams and J.M. Musser. 2000. Nonpolar inactivation of the hypervariable streptococcal inhibitor of complement gene (sic) in serotype M1 Streptococcus pyogenes significantly decreases mouse mucosal colonization. Infect. Immun. 68: 535–542.


Lyon W.R., J.C. Madden, J.C. Levin, J.L. Stein and M.G. Caparon. 2001. Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes. Mol. Microbiol. 42: 145–157.


Marouni M.J. and S. Sela. 2003. The luxS gene of Streptococcus pyogenes regulates expression of genes that affect internalization by epithelial cells. Infect. Immun. 71: 5633–5639.


Musser J.M. and F.R. DeLeo. 2005. Toward a genome-wide systems biology analysis of host-pathogen interactions in group A Streptococcus. Am. J. Pathol. 167: 1461–1472.


Rotstein O.D., P.E. Nasmith and S. Grinstein. 1987. The Bacteroides by-product succinic acid inhibits neutrophil respiratory burst by reducing intracellular pH. Infect. Immun. 55: 864–870.


Schell M.A. 1993. Molecular biology of the LysR family of transcriptional regulators. Annu. Rev. Microbiol. 47: 597–626.


Shelburne S.A., P. Sumby, I. Sitkiewicz, C. Granville, F.R. DeLeo and J.M. Musser. 2005. Central role of a bacterial two-component gene regulatory system of previously unknown function in pathogen persistence in human saliva. Proc. Natl. Acad. Sci. USA 102: 16037–16042.


Sitkiewicz I. and J.M. Musser. 2006. Expression microarray and mouse virulence analysis of four conserved two-component gene regulatory systems in group A Streptococcus. Infect. Immun. 74: 1339–1351.


Sitkiewicz I. and W. Hryniewicz. 2010. Pyogenic streptococci – danger of re-emerging pathogens. Pol. J. Microbiol. 59: 219–226.


Sumby P., S.F. Porcella, A.G. Madrigal, K.D. Barbian, K. Virtaneva, S.M. Ricklefs, D.E. Sturdevant, M.R. Graham, J. Vuopio-Varkila, N.P. Hoe and others. 2005. Evolutionary origin and emergence of a highly successful clone of serotype M1 group A Streptococcus involved multiple horizontal gene transfer events. J. Infect. Dis. 192: 771–782.


Waters C.M. and B.L. Bassler. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21: 319–346.


Virtaneva K., S.F. Porcella, M.R. Graham, R.M. Ireland,C.A. Johnson, S.M. Ricklefs, I. Babar, L.D. Parkins, R.A. Romero, G.J. Corn and others. 2005. Longitudinal analysis of the group A Streptococcus transcriptome in experimental pharyngitis in cynomolgus macaques. Proc. Natl. Acad. Sci. USA 102: 9014–9019.


Voyich J.M., D.E. Sturdevant, K.R. Braughton, S.D. Kobayashi, B. Lei, K. Virtaneva, D.W. Dorward, J.M. Musser and F.R. DeLeo. 2003. Genome-wide protective response used by group A Streptococ-cus to evade destruction by human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA 100: 1996–2001.


Voyich J.M., K.R. Braughton, D.E. Sturdevant, C. Vuong,S.D. Kobayashi, S.F. Porcella, M. Otto, J.M. Musser and F.R. DeLeo.2004. Engagement of the pathogen survival response used by group A Streptococcus to avert destruction by innate host defense. J. Immunol. 173: 1194–1201.


Zaim J. and A.M. Kierzek. 2003. The structure of full-length LysR-type transcriptional regulators. Modeling of the full-length OxyR transcription factor dimer. Nucleic Acids Res. 31: 1444–1454.