Dipicolinic Acid Release and the Germination of Alicyclobacillus acidoterrestris Spores under Nutrient Germinants

Publications

Share / Export Citation / Email / Print / Text size:

Polish Journal of Microbiology

Polish Society of Microbiologists

Subject: Microbiology

GET ALERTS

ISSN: 1733-1331
eISSN: 2544-4646

DESCRIPTION

6
Reader(s)
27
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 66 , ISSUE 1 (March 2017) > List of articles

Dipicolinic Acid Release and the Germination of Alicyclobacillus acidoterrestris Spores under Nutrient Germinants

Izabela Porębska * / Barbara Sokołowska / Łukasz Woźniak

Keywords : Alicyclobacillus acidoterrestris, AGFK mixture, dipicolinic acid, L-alanine, spore germination

Citation Information : Polish Journal of Microbiology. VOLUME 66 , ISSUE 1 , ISSN (Online) 2544-4646, DOI: 10.5604/17331331.1234994, March 2017

License : (CC BY-NC-ND 4.0)

Received Date : 29-April-2016 / Accepted: 30-July-2016 / Published Online: 30-March-2017

ARTICLE

ABSTRACT

The presence of Alicyclobacillus, a thermoacidophilic and spore-forming bacterium, in acidic fruit juices poses a serious problem for the processing industry. A typical sign of spoilage in contaminated juices is a characteristic phenolic off-flavour associated with the produc­tion of guaiacol. Spores are formed in response to starvation and in a natural environment re-access the nutrients, e.g.: L-alanine and AGFK – a mixture of asparagine, glucose, fructose and potassium, triggers germination. The aim of this study was to estimate the impact of L-alanine and AGFK on the germination of the spores of two Alicyclobacillus acidoterrestris strains and to evaluate the relationship of the germination rate with dipicolinic acid (DPA) release. The spores were suspended in apple juice or in buffers at pH 4 and pH 7, followed by the addition of L-alanine and AGFK. Suspensions were or were not subjected, to a temperature of 80°C/10 min and incubated for various periods of time at 45°C. Optical density (OD660) was used to estimate the number of germinated spores. The amount of DPA released was determined using HPLC. The results indicate that the degree of germination of A. acidoterrestris spores depended on the strain and time of incubation and the nutritious compounds used. The data obtained show that the amount of DPA released correlated to the number of A. acidoterrestris spores germinated.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

Abel-Santos E. and T. Dodatko. 2007. Differential nucleoside recognition during Bacillus cereus 569 (ATCC 10876) spore germination. New J. Chem. 31: 748–755.

 

Akoachere M., R.C. Squires, A.M. Nour, L. Angelov, J. Brojatsch and E.V. Abel-Santos. 2007. Identification of an in vivo inhibitor of Bacillus anthracis Sterne spore germination. J. Biol. Chem. 282: 12112–12118.

 

Bae Y.Y., H.J. Lee, S.A. Kim and M.S. Rhee. 2009. Inactivation of Alicyclobacillus acidoterrestris spores in apple juice by supercritical carbon dioxide. Int. J. Food Microbiol. 136(1): 95–100.

 

Barlass P.J., C.W. Houston, M.O. Clements and A. Moir. 2002. Germination of Bacillus cereus spores in response to L-alanine and to nosine: the roles of gerL and gerQ operons. Microbiol. 148: 2089–2095.

 

Bevilacqua A., E. Ciuffreda, M. Sinigaglia and M.R. Corbo. 2014. Effects of lysozyme on Alicyclobacillus acidoterrestris under laboratory conditions. Int. J. Food Sci. Technol. 49: 224–229.

 

Bevilacqua A., E. Ciufureda, M. Sinigaglia and M. Rosario Corbo. 2015. Spore inactivation and DPA release in Alicyclobacillus acidoterrestris under stress conditions. Food Microbiol. 46: 299–306.

 

Broussolle V., F. Alberto, C.A. Shearman, D.R. Mason, L. Botella, C. Nguyen, M.W. Peck and F. Carlin. 2002. Molecular and physiological characterisation of spore germination in Clostridium botu-linum and Clostridium sporogenes. Anaerobe 8:89–100.

 

Brunt J., J. Plowman, D.K. Gaskin, M. Itchner, A.T. Carter and M.W. Peck. 2014. Functional characterisation of germinant receptors in Clostridium botulinum and Clostridium sporogenes pres-ent novel insights into spore germination system. Plos One 10(9): e1004382.

 

Byun B.Y., Y. Liu and J. Tang. 2011. Optimization and evaluation of heat-shock condition for spore enumeration being used in thermal-process verification: differentaial responses of spores and vegetative cells of Clostridium sporogenes to heat shock. Food Sci. Biotechnol. 20: 751–757.

 

Cabera-Martinez R.M., F. Tovar-Rojo, V.R. Vepachedu and P. Setlow. 2003. Effect of overexpressiom of nutrient receptors on gemination of spores of Bacilus subtilis. J. Bacteriol. 185(8): 2457–2464.

 

Chen Y., W.K. Ray, R.F. Helm, S.B. Melville and D.L. Popham. 2014. Levels of germination proteins in Bacilluis subtilis dormant, superdormant, and germinating spores. Plos One 9(4): e95781.

 

Christie G. and C.R. Lowel. 2008. Amino acid substitutions in trans-membrane domains 9 and 10 of GerVB that affect the germination properties of Bacillus megaterium spores. J. Bacteriol. 190: 8009–8017.

 

Cruz-Mora J., A. Pérez-Valdespino, S. Gupta, N. Withange,R. Kuwana, H. Takamatsu, G. Christie and P. Setlow. 2015. The GerW protein is not involved in the germination of spores of Bacillus species. PLoS One 10(3): e0119125.

 

Dodatko T., M. Akoachere, S.M. Muehlbauer, F. Helfrich, A. Howerton, C. Ross, V. Wysocki, J. Brojatsch and E. Abel-Santos. 2009. Bacillus cereus spores release alanine that synergizes with inosine to promote germination. PloS One 4(7): e6398.

 

Fisher N. and P. Hanna. 2005. Characterization of Bacillus anthracis germinant receptors in vitro. J. Bacteriol. 187: 8055–8062.

 

Ghosh S., M. Scotland and P. Setlow. 2012. Levels of germination proteins in dormant and superdormant spores of Bacillus subtilis.J. Bacteriol. 194(9):2221–2227.

 

Kato S., A. Masayama, T. Yoshimura, H. Hemmi, H. Tsunoda,T. Kihara and R. Moriyama. 2009. Physiological role of carbon dioxide in spore germination of Clostridium perfringens S40. J. Biosci. Bioeng. 108(6): 477–483.

 

Kuwana R. and H. Takamatsu. 2013. The GerW protein is essential for L-alanine-stimulated germination of Bacillus subtilis spores.J. Biochem. 154(5): 409–417.

 

Lovdal I.S., C. From, E.H. Madslien, K.C. Romundset, E. Klufterud, J.T. Rosnes and P.E. Granum. 2012. Role of the gerA operon in L-alanine germination of Bacillus lichenoformis spores. BMC Microbiol. 12: 34.

 

Luu S. and P. Setlow. 2014. Analysis of the loss in heat and acid resistance during germination of spores of Bacillus species. J. Bacteriol. 196(9): 1733–1740.

 

Luu S., J. Cruz-Mora, B. Setlow, F.E. Feeherry, C.J. Doona andP. Setlow. 2015. The effects of heat activation on Bacillus spore germination, with nutrients or under pressure, with or without various germination proteins. Appl. Env. Microbiol. 81(8): 2927–2938

 

McCann K.P., C. Robinson, R.L. Sammons, D.A. Smith and B.M. Corfe. 1996. Alanine germination receptors of Bacillus subtilis. Lett. Appl. Microbiol. 23: 290–294.

 

Moir A., B.M. Corfe and J. Behravan. 2002. Spore germination. Cell Mol. Life Sci. 59: 403–409.

 

Moir A. 2006. How do spores germinate? J. Appl. Microbiol. 101: 526–530.

 

Mongkolthanaruk W., C. Robinson and A. Moir. 2013. Localization of the GerD spore germination protein in the Bacillus subtilis spore. Mocrobiol. 155: 1146–1151.

 

Nagler K., P. Setlow, K. Reineke, A. Driks and R. Moleller. 2015. Involvment of coat proteins in Bacillus subtilis spore germination in high salinity environments. Appl. Env. Microbiol. 81(19): 6725–6735.

 

Pandey R., A.T. Beek, N.O. Vischer, J.P. Smelt, S. Brul andE.M. Manders. 2013. Live cell imaging of germination and outgrowth of individual Bacillus subtilis spores; the effect of heat stress quantitatively analyzed with SporeTracker. PLoS One 8(3): 1–10.

 

Paredes-Sabja D., J.A. Torres, P. Setlow and M.R. Sarker. 2008. Clostridium perfringens spore germination: characterization of germinants and their receptors. J. Bacteriol. 190: 1190–1201.

 

Parades-Sabja D., P. Setlow and M.R. Sarker. 2011. Germination of spores of Bacillus and Clostridiales species: mechanisms and proteins involved. Trends Microbiol. 19(2): 85–94.

 

Porębska I., M. Rutkowska and B Sokołowska. 2015a. Decrease in optical density as a results of germination of Alicyclobacillus acidoterrestris spores under high hydrostatic pressure. High Press. Res. 35(1): 89–97.

 

Porębska I., B. Sokołowska, Ł. Woźniak, Skąpska. S., M. Fonberg-Broczek, S.J. Rzoska. 2015b. DPA release and germination of Alicyclobacillus acidoterrestris under HHP. J. Nutr. Food Sci. 5: 6.

 

Porębska I., B. Sokołowska and Ł. Łaniewska-Trokenheim. 2016. Effect of supercritical carbon dioxide on inactivation and germination of Alicyclobacillus acidoterrestris spores) (in Polish). Żywność. Nauka. Technol. 1(104).

 

Ramirez N. and E. Abel-Santos. 2010. Requirements for germination of Clostridium sordellii spores in vitro. J. Bacteriol. 192: 418–425.

 

Ramirez-Peralta A., P. Zhang and P. Setlow. 2012. Effect of sporulation conditions on the germination and germinations protein levels of Bacillus subtilis spores. Appl. Env. Microbiol. 78(8): 2689–2697.

 

Reineke K., K. Schlumbach, D. Baier, A. Mathys and D. Knorr. 2013a. The release of dipicolinic acid – the rate-limiting step of Bacillus endospore inactivation during the high pressure thermal sterilization process. Int. J. Food Microbiol. 162: 55–63.

 

Reineke K., A. Mathys, V. Heinz and D. Knorr. 2013b. Mechanisms of endospore inavtivation under high pressure. Trends Microbiol. 21(8): 296–304.

 

Ross C. and E. Abel-Santos. 2010. The ger receptor family from sporulating bacteria. Curr. Issues Mol. Biol. 12(3): 147–158.

 

Setlow B., A.E. Cowan and P. Setlow. 2003. Germination of spores of Bacillus subtilis with dodecylamine. J. Appl. Microbiol. 95: 637–645.

 

Setlow B., S. Atluri, R. Kitchel, K. Koziol-Dube and P. Setlow. 2006. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective α/β-type small acid-soluble proteins. J. Bacteriol. 188(11): 3740–3747.

 

Setlow B., P.G. Wahome and P. Setlow. 2008. Release of small molecules during germinations of spores of Bacillus species. J. Bacteriol. 190(13): 4759–4763.

 

Skąpska S., B. Sokołowska, A. Dekowska, M. Chotkiewicz andM. Fonberg-Broczek. 2012. Application of high pressure pasteurization to inactivate spores of Alicyclobacillus acidoterrestris in apple juice(in Polish). Żywność Nauka Technol. Jakość 3(82): 187–196.

 

Sokołowska B., S. Skąpska, M. Fonberg-Broczek, J. Niezgoda,M. Chotkiewicz, A. Dekowska and S.J. Rzoska. 2012. The combined effect of high pressure and nisin or lysosyme on the inactivation Alicyclobacillus acidoterrestris spores in apple juice. High Pressure Res. 32(1): 119–127.

 

Sokołowska B., S. Skąpska, M. Fonberg-Broczek, J. Niezgoda,M. Chotkiewicz, A. Dekowska and S.J. Rzoska. 2013. Factors influencing the inactivation of Alicyclobacillus acidoterrestris spores exposed to high hydrostatic pressure in apple juice. High Pressure Res. 33(1): 73–82.

 

Sokołowska B. 2014. Alicyclobacillus – thermophilic acidophilic spore-forming bacteria – profile and prevalence (in Polish). Żywność Nauka Technol. Jakość 4(95): 5–17

 

Sokołowska B., S. Skąpska, M. Fonberg-Broczek, J. Niezgoda, I. Porębska, A. Dekowska and S.J. Rzoska. 2015. Germination and inactivation of Alicyclobacillus acidoterrestris spores induced by moderate hydrostatic pressure. Pol. J. Microbiol. 64(4): 351–359

 

Stewart K.A., X. Yi, S. Ghosh and P. Setlow. 2012. Germination protein levels and rates of germination of spores of Bacillus subtilis with overexpressed or deleted genes encoding germination proteins. J. Bacteriol. 194(12): 3156–3164.

 

Terano H., K. Takahashi and Y. Sakakibara. 2005. Characterization of spore germination of a thermoacidophilic spore-forming bacterium, Alicyclobacillus acidoterrestris. Biosci. Biotechnol. Biochem. 69(6): 1217–1220.

 

Tianli Y., Z. Jiangbo and Y. Yahong. 2014. Spoilage by Alicyclobacillus bacteria in juice and beverage products: chemical, physical, and combined control methods. Compr. Rev. Food Sci. 13(5): 771–797.

 

Troiano A.J., J. Zhang, A.E. Cowan, J. Yu and P. Setlow. 2015. Analysis of the dynamics of a Bacillus subtilis spore germination protein complex during spore germination and outgrowth. J. Bacteriol. 197(2): 252–261.

 

Vercammen A., B. Vivijs, I. Lurquin and C.W. Michiels. 2012. Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. Int. J. Food Microbiol. 152(3): 162–167.

 

Wang S., P. Setlow and Y. Li. 2015. Slow leakage of Ca-dipicolinic acid from individual Bacillus spores during initiation of spore germination. J. Bacteriol. 197(6): 1095–1103.

 

Warth A.D. 1979. Liquid chromatographic determination of dipicolinic acid from bacterial spores. Appl. Environ. Microbiol. 38(6): 1029–1033.

 

Wuytack E.Y., J. Soons, F. Pochet and C.W. Michiels. 2000. Comparative study of pressure and nutrient induced germination of Bacillus subtilis spores. Appl. Env. Microbiol. 666(1): 257–261.

 

Yi X., J. Liu, J.R. Faeder and P. Setlow. 2011. Synergism between different germinant receptors in the germination of Bacillus subtilis spores. J. Bacteriol. 190(18): 4664–4671.

 

Zhnag P., W. Garner, X. Yi, J. Yu, Y. Li and P. Setlow. 2010. Factors affecting variability in time between addition of nutrient germinants and rapid dipicolinic acid release during germination of spores of Bacillus species. J Bacteriol. 192(14): 3608–3619.

 

Zhang J., W. Garner, P. Setlow and J. Yu. 2011. Quantitative analysis of spatial-temporal correlations during germination of spores of Bacilus species. J. Bacteriol. 193(15): 3765–3772.

 

Zhang P., J. Liang, X. Yi, P. Setlow and Y. Li. 2014. Monitoring of commitment, blocking and continuation of nutrient germinations of individual Bacillus subtilis spores. J. Bacteriol. 196(13): 2443–2454.

 

EXTRA FILES

COMMENTS