Search

  • Select Article Type
  • Abstract Supplements
  • Blood Group Review
  • Call to Arms
  • Hypothesis
  • In Memoriam
  • Interview
  • Introduction
  • Short Report
  • abstract
  • Abstracts
  • Article
  • book-review
  • case-report
  • case-study
  • Clinical Practice
  • Commentary
  • Conference Presentation
  • conference-report
  • congress-report
  • Correction
  • critical-appraisal
  • Editorial
  • Editorial Comment
  • Erratum
  • Events
  • Letter
  • Letter to Editor
  • mini-review
  • minireview
  • News
  • non-scientific
  • Obituary
  • original-paper
  • Original Research
  • Pictorial Review
  • Position Paper
  • Practice Report
  • Preface
  • Preliminary report
  • Product Review
  • rapid-communication
  • Report
  • research-article
  • Research Communicate
  • research-paper
  • Research Report
  • Review
  • review -article
  • review-article
  • review-paper
  • Review Paper
  • Sampling Methods
  • Scientific Commentary
  • short-communication
  • short-report
  • Student Essay
  • Varia
  • Welome
  • Select Journal
  • In Jour Smart Sensing And Intelligent Systems
  • Transport Problems

 

original-paper | 15-February-2020

Thermopile power measurement for heat balance calorimetry

Very high resolution power sensors are required for measuring the rate of heat production (~10 µW) of small samples of heart muscle (rat cardiac trabeculae, ~2 mm long and ~200 µm diameter). In this paper, we examine the design criteria for thermopiles to maximize their signal-to-noise ratio for heat balance calorimetry. We found that those thermopiles with a high thermoelectric figure-of-merit (ZT) are the best for power measurements. An initial prototype with a resolution of 53 nW

Callum M. Johnston, Bryan P. Ruddy, Poul M. F. Nielsen, Andrew J. Taberner

International Journal on Smart Sensing and Intelligent Systems, Volume 7 , ISSUE 5, 1–6

Article | 31-December-2020

EVALUATION OF THE INFLUENCE OF THE PERCENTAGE OF COPPER CONTENT ON THE PHYSICAL AND CHEMICAL PROPERTIES OF THE FRICTION MATERIAL

Copper is one of the main components of friction materials used in vehicles’ brake systems. It is mainly used due to two features: good thermal conductivity and lubricity. Unfortunately, it is harmful no only to humans but also more to aquatic life. For this reason, there is an attempt to minimize its use. This paper presents the results of testing four groups of samples with different Cu contents (5, 10, 15, and 20%). Laboratory tests were performed using calorimetry, hot wire method

Andrzej BORAWSKI, Wojciech TARASIUK, Eliza BORAWSKA, Bożena SZCZUCKA-LASOTA, Michał KRZYSZTOFORSKI

Transport Problems, Volume 15 , ISSUE 4, Part 1, 29–38

No Record Found..
Page Actions