Search

  • Select Article Type
  • Abstract Supplements
  • Blood Group Review
  • Call to Arms
  • Hypothesis
  • In Memoriam
  • Interview
  • Introduction
  • Short Report
  • abstract
  • Abstracts
  • Article
  • book-review
  • case-report
  • case-study
  • Clinical Practice
  • Commentary
  • Conference Presentation
  • conference-report
  • congress-report
  • Correction
  • Editorial
  • Editorial Comment
  • Erratum
  • Events
  • Letter
  • Letter to Editor
  • mini-review
  • minireview
  • News
  • non-scientific
  • Obituary
  • original-paper
  • Original Research
  • Pictorial Review
  • Position Paper
  • Practice Report
  • Preface
  • Preliminary report
  • Product Review
  • rapid-communication
  • Report
  • research-article
  • Research Communicate
  • research-paper
  • Research Report
  • Review
  • review -article
  • review-article
  • Review Paper
  • Sampling Methods
  • Scientific Commentary
  • short-communication
  • short-report
  • Student Essay
  • Varia
  • Welome
  • Select Journal
  • In Jour Smart Sensing And Intelligent Systems
  • International Journal Advanced Network Monitoring Controls

 

Article

A SCENE RECOGNITION ALGORITHM BASED ON MULTI-INSTANCE LEARNING

. Considering the traditional classification method based on Bag of Words model is vulnerable to the background, block and scalar variance of an image, we propose in this article a multiple visual words learning method for image classification, which is based on the concept of visual phrases combined with Multiple Instance Learning. The final classification model is able to show the spatial features of image classes. Experiments performed on standard image testing sets, Caltech 101 and Scene 15, show the

Tao Wang, Wenqing Chen, Bailing Wang

International Journal on Smart Sensing and Intelligent Systems , ISSUE 4, 1470–1492

Article

Lidar Image Classification based on Convolutional Neural Networks

Yang Wenhui, Yu Fan

International Journal of Advanced Network, Monitoring and Controls , ISSUE 3, 158–162

Article

SENSITIVITY ANALYSIS OF HIERARCHICAL HYBRID FUZZY - NEURAL NETWORK

To identify the important attributes of complex system, which is high-dimensional and contain both discrete and continuous variables, this paper proposes a sensitivity analysis method of hierarchical hybrid fuzzy - neural network. We derive the sensitivity indexes of discrete and continuous variables through the differential method. To verify the effectiveness of our method, this study employed a man-made example and a remote sensing image classification example to test the performance of our

Xing Haihua, Yu Xianchuan, Hu Dan, Dai Sha

International Journal on Smart Sensing and Intelligent Systems , ISSUE 3, 1837–1854

No Record Found..
Page Actions