CLASSIFICATION PROBLEMS BASED ON REGRESSION MODELS FOR MULTI-DIMENSIONAL FUNCTIONAL DATA

Publications

Share / Export Citation / Email / Print / Text size:

Statistics in Transition New Series

Polish Statistical Association

Central Statistical Office of Poland

Subject: Economics , Statistics & Probability

GET ALERTS

ISSN: 1234-7655
eISSN: 2450-0291

DESCRIPTION

8
Reader(s)
30
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 16 , ISSUE 1 (March 2015) > List of articles

CLASSIFICATION PROBLEMS BASED ON REGRESSION MODELS FOR MULTI-DIMENSIONAL FUNCTIONAL DATA

Tomasz Górecki * / Mirosław Krzyśko * / Waldemar Wołyński *

Keywords : multivariate functional data, functional data analysis, multivariate functional regression, classification.

Citation Information : Statistics in Transition New Series. Volume 16, Issue 1, Pages 97-110, DOI: https://doi.org/10.21307/stattrans-2015-006

License : (CC BY 4.0)

Published Online: 31-October-2017

ARTICLE

ABSTRACT

Data in the form of a continuous vector function on a given interval are referred to as multivariate functional data. These data are treated as realizations of multivariate random processes. We use multivariate functional regression techniques for the classification of multivariate functional data. The approaches discussed are illustrated with an application to two real data sets.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. ANDERSON, T. W., (1984). An Introduction to Multivariate Statistical Analysis. Wiley, New York.
  2. ANDO, T., (2009). Penalized optimal scoring for the classification of multidimensional functional data. Statistcal Methodology 6, 565–576.
  3. BESSE, P., (1979). Etude descriptive d’un processus. Ph.D. thesis, Université Paul Sabatier.
  4. EFRON, B., HASTIE, T., JOHNSTONE, I., TIBSHIRANI, R., (2004). Least Angle Regression. Annals of Statistics 32(2), 407–499.
  5. FERRATY, F., VIEU, P., (2003). Curve discrimination. A nonparametric functional approach. Computational Statistics & Data Analysis 44, 161–173.
  6. FERRATY, F., VIEU, P., (2006). Nonparametric Functional Data Analysis: Theory and Practice. Springer, New York.
  7. FERRATY, F., VIEU, P., (2009). Additive prediction and boosting for functional data. Computational Statistics & Data Analysis 53(4), 1400–1413.
  8. GÓRECKI, T., KRZYŚKO, M., (2012). Functional Principal Components Analysis. In: J. Pociecha and R. Decker (Eds.): Data analysis methods and its applications. C. H. Beck, Warszawa, 71–87.
  9. GÓRECKI, T, KRZYŚKO, M., WASZAK, Ł., WOŁYŃSKI, W., (2014). Methods of reducing dimension for functional data. Statistics in Transition new series 15, 231–242.
  10. HASTIE, T. J., TIBSHIRANI, R. J., BUJA, A., (1995). Penalized discriminant analysis. Annals of Statistics 23, 73–102.
  11. JAMES, G. M., (2002). Generalized linear models with functional predictors. Journal of the Royal Statistical Society 64(3), 411–432.
  12. JACQUES, J., PREDA, C., (2014). Model-based clustering for multivariate functional data. Computational Statistics & Data Analysis 71, 92–106.
  13. KRZYŚKO, M., WOŁYŃSKI, W., (2009). New variants of pairwise classification. European Journal of Operational Research 199(2), 512–519.
  14. MATSUI, H., ARAKI, Y., KONISHI, S., (2008). Multivariate regression modeling for functional data. Journal of Data Science 6, 313–331.
  15. MÜLLER, H. G., STADMÜLLER, U., (2005). Generalized functional linear models. Annals of Statistics 33, 774–805.
  16. NADARAYA, E. A., (1964). On Estimating Regression. Theory of Probability and its Applications 9(1), 141–142.
  17. OLSZEWSKI, R. T., (2001). Generalized Feature Extraction for Structural Pattern Recognition in Time-Series Data. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA.
  18. RAMSAY, J. O., SILVERMAN, B. W., (2005). Functional Data Analysis. Springer, New York.
  19. REISS, P. T., OGDEN R. T., (2007). Functional principal component regression and functional partial least squares. Journal of the American Statistcal Assosiation 102(479), 984–996.
  20. ROSSI, F., DELANNAYC, N., CONAN-GUEZA, B., VERLEYSENC, M., (2005). Representation of functional data in neural networks. Neurocomputing 64, 183–210.
  21. ROSSI, F., VILLA, N., (2006). Support vector machines for functional data classification. Neural Computing 69, 730–742.
  22. ROSSI, N., WANG, X., RAMSAY, J. O., (2002). Nonparametric item response function estimates with EM algorithm. Journal of Educational and Behavioral Statistics 27, 291–317.
  23. RODRIGUEZ, J. J., ALONSO, C. J., MAESTRO, J. A., (2005). Support vector machines of intervalbased features for time series classification. Knowledge-
    Based Systems 18, 171–178.
  24. SAPORTA, G., (1981). Méthodes exploratoires d’analyse de données temporelles, thèse de doctorat d’état es sciences mathématiques soutenue le 10 juin 1981, Université Pierre et Marie Curie.
  25. SHMUELI, G., (2010). To explain or to predict? Statistical Science 25(3), 289–310.
  26. TIBSHIRANI, R., (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B 58(1), 267–288.
  27. WATSON, G. S., (1964). Smooth regression analysis. Sankhya – The Indian Journal of Statistics, Series A 26(4), 359–372.
  28. WOLD, H., (1985). Partial least squares. In: S. Kotz, and N.L. Johnson (Eds.): Encyclopedia of statistical sciences vol. 6, Wiley, New York, 581–591.

EXTRA FILES

COMMENTS