1. Introduction
Ranked set sampling (RSS) is a method of sampling that can be advantageous when quantification of all sampling units is costly but a small set of units can be easily ranked, according to the character under investigation, without actual quantification. The technique was first introduced by McIntyre (1952) for estimating means pasture and forage yields. The theory and application of ranked set sampling given by Chen et al. (2004).
A random variable X is said to have a log-logistic distribution with the scale parameter α and the shape parameter β if its cumulative distribution function (CDF) and probability density function (PDF) are respectively given as (see, Lesitha and Thomas (2012))
and
Also, the kth moment of (2) exists only when k < β and is given by
where
B denotes beta function.
The applications of log-logistic distribution are well known in a survival analysis of data sets such as survival times of cancer patients in which the hazard rate increases initially and decreases later (for example, see Bennett (1983)). In economic studies of distributions of wealth or income, it is known as Fisk distribution (see Fisk (1961)) and is considered as an equivalent alternative to a lognormal distribution. For further details on the importance and applications of a log-logistic distribution one may refer to Shoukri et al. (1988), Geskus (2001), Robson and Reed (1999) and Ahmad et al. (1988). For current reference in this context the reader is referred to Singh and Mehta (2013; 2014, a, b, 2015, 2016 a, b, c), Mehta and Singh (2014) and Mehta (2015).
If X1:n, X2:n, …, Xn:n are the order statistics of a random sample of size n drawn from (1) then
are distributed as order statistics of the same sample size drawn from a
LLD(
1,
β) with PDF given by
For a detailed description of various properties of order statistics arising from a LLD(1, β) one may refer to Ragab and Green (1984). Balakrishnan and Malik (1987) have given some recurrence relations on the single and product moments of order statistics arising from a LLD(1, β). Suppose
and
By using (4) in (6)-(8) we have
Lesitha and Thomas (2012) have computed the values of γr:n and σr,s:n,1 ≤ r,s ≤ n independently for n = 2(1)8 and for β = 2.5(0.5)5.0 using Mathcad software so as to use those values for the computation of BLUE of α based on order statistics. If X = (Xl:n, X2:n, …, Xn:n)′ then the mean vector E(X) and dispersion matrix D(X) of X are
and
where
γ = (
γ1:n,
γ2:n, …,
γn:n)′ and
G = ((
σr,s:n)).
Thus, by Gauss-Markov theorem Lesitha and Thomas (2012) gives the BLUE based on order statistics of a random sample of size n as:
and
where
V1 = (
γ′G–1γ)
–1.
Lesitha and Thomas (2012) further estimate α based on the mean of unbiased estimators of α defined from each individual observations in the balanced ranked set sampling as:
with
where
.
Lesitha and Thomas (2012) also estimate α based on BLUE in the balanced ranked set sampling as:
and
where
γ = (
γ1:n,
γ2:n, …,
γn:n)′,
G1 =
diag(
σ1,1:n,
σ2,2:n, …,
σn,n:n) and
.
When n is small the estimators α* and α** may not be acceptable for the expected level of precision. In such situations Lesitha and Thomas (2012) makes N cycles of RSS. For details see Chen et al. (2004). Suppose and denote the estimators of α corresponding to α* and α** respectively, based on the ith cycle. Then, estimators of α based on N cycles are given by:
and
with
and
Median ranked set sampling (MRSS) was first introduced by Muttlak (1997) to estimate the mean of a normal distribution. In general, MRSS is applied as a modification of RSS when one is interested in estimating a parameter associated with the central tendency of a distribution. The procedures of MRSS are given as: Select n independent samples each with n units as in the case of RSS. Then rank the units in each sample either by judgement method or by using some inexpensive means without having actual measurement on the unit. Lesitha and Thomas (2012) used MRSS method to estimate α as:
with
where
2. Improved estimation of the scale parameter α
Let ti, i = 1,2,3,4 be an unbiased estimator of the parameter α, then we define a class of estimators for α as
where
Ai′
s,
i = 1,2,3,4 are suitably chosen constants such that mean squared error of the estimators
Ti′
s,
i = 1,2,3,4 is minimum.
The biases and mean squared errors (MSEs) of Ti,i = 1,2,3,4 are respectively given by
and
The MSE(Ti), i = 1,2,3,4 is minimized for
Thus, the resulting minimum MSE estimator of α is given by
The biases and MSEs of T0i,i = 1,2,3,4 are respectively given as
and
We have from (12) - (15) and (17) that
It follows from (18) that the proposed MMSE estimators T0i′ s,i = 1,2,3,4 are better than the corresponding usual unbiased estimators ti′ s,i = 1,2,3,4.
3. Improved estimation of the scale parameter α with prior information
Let ti,i = 1,2,3,4 be an unbiased estimator of the parameter α, then we define a class of estimators of α using the prior point estimate α0 of α as
where
Bi′
s,
i = 1,2,3,4 are suitably chosen constants such that mean squared error of the estimators
T1i′
s,
i = 1,2,3,4 are minimum.
The biases and mean squared errors (MSEs) of T1i, i = 1,2,3,4 are respectively given by
and
where
with
.
The MSE(T1i),i = 1,2,3,4 is minimized for
The value of Bi,i = 1,2,3,4 at (20) depends on the unknown parameter α, so an estimate of Bi,i = 1,2,3,4 based on sample data is given by
Putting ,i = 1,2,3,4 in (19), we get a shrinkage estimator of ti′ s,i = 1,2,3,4 as
The biases and mean squared errors (MSEs) of the estimators are respectively given by
and
Comparisons of the proposed shrinkage estimators with that of corresponding usual unbiased estimators ti′ s,i = 1,2,3,4 are given in the following Theorem 1.
Theorem 1: The proposed shrinkage estimators are better than the corresponding usual unbiased estimators ti′ s,i = 1,2,3,4 if
Proof: From (12) - (15) and (23), we have that
Since and λ(= α0 / α) cannot be negative therefore (24) reduces to
or
or
Hence the theorem. ♦Further, we have compared the proposed shrinkage estimators with that of corresponding MMSE estimators T0i′ s,i = 1,2,3,4 and the results are presented in Theorem 2.
Theorem 2: The proposed shrinkage estimators are better than the corresponding MMSE estimators T0i′ s,i = 1,2,3,4 if
Proof: From (17) and (23) we have that
Hence the theorem. ♦4. Relative efficiencies
We have computed the relative efficiencies of various suggested estimators to usual estimators by using the formulae:
and
The values of ei,i = 1,2,…,7 are shown in Table 1 for n = 2(1)8 and β = 2.5(0.5)5.
Table 1.
The values of ei′ s,i = 1,2,…,7.
N | ß | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
2 | 2.5 | 1.3371 | 1.4025 | 1.2799 | 1.2799 | 1.1530 | 1.3124 | 1.0000 |
| 3.0 | 1.2158 | 1.1978 | 1.1674 | 1.1674 | 1.2381 | 1.1516 | 1.0000 |
| 3.5 | 1.1514 | 1.1254 | 1.1135 | 1.1135 | 1.2901 | 1.0932 | 1.0000 |
| 4.0 | 1.1126 | 1.0885 | 1.0827 | 1.0827 | 1.3242 | 1.0643 | 1.0000 |
| 4.5 | 1.0872 | 1.0665 | 1.0633 | 1.0633 | 1.3476 | 1.0474 | 1.0000 |
| 5.0 | 1.0697 | 1.0521 | 1.0501 | 1.0501 | 1.3644 | 1.0368 | 1.0000 |
3 | 2.5 | 1.2011 | 1.1904 | 1.1180 | 1.0832 | 2.1798 | 2.0828 | 1.3740 |
| 3.0 | 1.1308 | 1.0970 | 1.0752 | 1.0543 | 2.2446 | 1.7159 | 1.3572 |
| 3.5 | 1.0937 | 1.0626 | 1.0526 | 1.0385 | 2.3093 | 1.5893 | 1.3475 |
| 4.0 | 1.0706 | 1.0447 | 1.0391 | 1.0288 | 2.3527 | 1.5272 | 1.3422 |
| 4.5 | 1.0552 | 1.0338 | 1.0303 | 1.0224 | 2.3815 | 1.4910 | 1.3382 |
| 5.0 | 1.0443 | 1.0266 | 1.0242 | 1.0180 | 2.4033 | 1.4675 | 1.3356 |
4 | 2.5 | 1.1392 | 1.1118 | 1.0648 | 1.0477 | 2.6846 | 2.2089 | 1.3376 |
| 3.0 | 1.0939 | 1.0582 | 1.0424 | 1.0317 | 2.7929 | 1.7903 | 1.3246 |
| 3.5 | 1.0678 | 1.0380 | 1.0301 | 1.0227 | 2.8598 | 1.6495 | 1.3176 |
| 4.0 | 1.0514 | 1.0273 | 1.0226 | 1.0171 | 2.9034 | 1.5803 | 1.3126 |
| 4.5 | 1.0413 | 1.0208 | 1.0176 | 1.0134 | 3.0062 | 1.5408 | 1.3102 |
| 5.0 | 1.0324 | 1.0164 | 1.0141 | 1.0107 | 2.9570 | 1.5158 | 1.3085 |
5 | 2.5 | 1.1078 | 1.0740 | 1.0409 | 1.0278 | 3.5999 | 2.5482 | 1.4547 |
| 3.0 | 1.0733 | 1.0391 | 1.0272 | 1.0187 | 3.7126 | 2.0476 | 1.4397 |
| 3.5 | 1.0531 | 1.0257 | 1.0195 | 1.0135 | 3.7819 | 1.8805 | 1.4317 |
| 4.0 | 1.0403 | 1.0186 | 1.0147 | 1.0101 | 3.8704 | 1.8188 | 1.4421 |
| 4.5 | 1.0316 | 1.0141 | 1.0115 | 1.0080 | 3.8489 | 1.7503 | 1.4223 |
| 5.0 | 1.0256 | 1.0112 | 1.0092 | 1.0065 | 3.8785 | 1.7199 | 1.4196 |
6 | 2.5 | 1.0880 | 1.0528 | 1.0282 | 1.0196 | 4.2168 | 2.6150 | 1.4288 |
| 3.0 | 1.0600 | 1.0282 | 1.0189 | 1.0133 | 4.3313 | 2.0988 | 1.4170 |
| 3.5 | 1.0437 | 1.0187 | 1.0136 | 1.0096 | 4.3995 | 1.9265 | 1.4101 |
| 4.0 | 1.0332 | 1.0135 | 1.0103 | 1.0073 | 4.4473 | 1.8430 | 1.4065 |
| 4.5 | 1.0261 | 1.0103 | 1.0080 | 1.0057 | 4.4756 | 1.7943 | 1.4024 |
| 5.0 | 1.0211 | 1.0082 | 1.0065 | 1.0046 | 4.5010 | 1.7638 | 1.4009 |
7 | 2.5 | 1.0735 | 1.0397 | 1.0206 | 1.0138 | 5.0286 | 2.8038 | 1.4800 |
| 3.0 | 1.0509 | 1.0214 | 1.0139 | 1.0094 | 5.1991 | 2.2498 | 1.4690 |
| 3.5 | 1.0372 | 1.0147 | 1.0106 | 1.0068 | 5.2926 | 2.1298 | 1.5419 |
| 4.0 | 1.0282 | 1.0103 | 1.0076 | 1.0052 | 5.3054 | 1.9708 | 1.4542 |
| 4.5 | 1.0222 | 1.0079 | 1.0060 | 1.0041 | 5.3447 | 1.9217 | 1.4556 |
| 5.0 | 1.0179 | 1.0062 | 1.0048 | 1.0033 | 5.3582 | 1.8854 | 1.4494 |
8 | 2.5 | 1.0643 | 1.0310 | 1.0157 | 1.0107 | 5.7315 | 2.8525 | 1.4632 |
| 3.0 | 1.0444 | 1.0168 | 1.0106 | 1.0073 | 5.8758 | 2.2888 | 1.4526 |
| 3.5 | 1.0329 | 1.0112 | 1.0077 | 1.0053 | 6.0530 | 2.1067 | 1.4484 |
| 4.0 | 1.0245 | 1.0081 | 1.0058 | 1.0040 | 5.9651 | 2.0116 | 1.4441 |
| 4.5 | 1.0190 | 1.0062 | 1.0046 | 1.0032 | 5.9067 | 1.9593 | 1.4396 |
| 5.0 | 1.0156 | 1.0049 | 1.0037 | 1.0025 | 6.0905 | 1.9479 | 1.4568 |
The values of ei,i = 8,9,…,15 are shown in Tables 2 to 5 for n = 2(1)8; β = 2.5(0.5)5 and different values of .
Table 2.
The values of ei for i = 8 and 9
| |
| Range of λ in which is efficient to t1 |
n | ß | λ = 1.00 | λ = 1.25 and λ = 0.75 | λ = 1.50 and λ = 0.50 | λ = 1.75 and λ = 0.25 | λ = 2.00 | λ = 2.25 |
2 | 2.5 | 1.7878 | 1.7509 | 1.6489 | 1.5028 | 1.3371 | 1.1710 | (0,2.53) |
| 3.0 | 1.4782 | 1.4586 | 1.4026 | 1.3182 | 1.2158 | 1.1054 | (0,2.49) |
| 3.5 | 1.3257 | 1.3133 | 1.2773 | 1.2217 | 1.1514 | 1.0721 | (0,2.47) |
| 4.0 | 1.2378 | 1.2292 | 1.2039 | 1.1641 | 1.1126 | 1.0527 | (0,2.45) |
| 4.5 | 1.1820 | 1.1756 | 1.1568 | 1.1268 | 1.0872 | 1.0403 | (0,2.44) |
| 5.0 | 1.1442 | 1.1392 | 1.1246 | 1.1010 | 1.0697 | 1.0319 | (0,2.44) |
3 | 2.5 | 1.4426 | 1.4247 | 1.3735 | 1.2960 | 1.2011 | 1.0977 | (0,2.48) |
| 3.0 | 1.2786 | 1.2683 | 1.2382 | 1.1910 | 1.1308 | 1.0617 | (0,2.46) |
| 3.5 | 1.1961 | 1.1892 | 1.1688 | 1.1363 | 1.0937 | 1.0434 | (0,2.45) |
| 4.0 | 1.1461 | 1.1411 | 1.1263 | 1.1024 | 1.0706 | 1.0323 | (0,2.44) |
| 4.5 | 1.1133 | 1.1095 | 1.0982 | 1.0798 | 1.0552 | 1.0250 | (0,2.43) |
| 5.0 | 1.0906 | 1.0876 | 1.0787 | 1.0641 | 1.0443 | 1.0200 | (0,2.43) |
4 | 2.5 | 1.2977 | 1.2865 | 1.2541 | 1.2035 | 1.1392 | 1.0659 | (0,2.46) |
| 3.0 | 1.1966 | 1.1896 | 1.1692 | 1.1366 | 1.0939 | 1.0435 | (0,2.45) |
| 3.5 | 1.1402 | 1.1354 | 1.1212 | 1.0983 | 1.0678 | 1.0310 | (0,2.44) |
| 4.0 | 1.1053 | 1.1018 | 1.0913 | 1.0743 | 1.0514 | 1.0232 | (0,2.43) |
| 4.5 | 1.0843 | 1.0815 | 1.0732 | 1.0597 | 1.0413 | 1.0186 | (0,2.43) |
| 5.0 | 1.0659 | 1.0638 | 1.0574 | 1.0468 | 1.0324 | 1.0145 | (0,2.43) |
5 | 2.5 | 1.2272 | 1.2190 | 1.1950 | 1.1570 | 1.1078 | 1.0503 | (0,2.45) |
| 3.0 | 1.1519 | 1.1466 | 1.1312 | 1.1063 | 1.0733 | 1.0336 | (0,2.44) |
| 3.5 | 1.1091 | 1.1054 | 1.0945 | 1.0769 | 1.0531 | 1.0241 | (0,2.43) |
| 4.0 | 1.0823 | 1.0796 | 1.0715 | 1.0583 | 1.0403 | 1.0181 | (0,2.43) |
| 4.5 | 1.0643 | 1.0622 | 1.0559 | 1.0457 | 1.0316 | 1.0141 | (0,2.43) |
| 5.0 | 1.0518 | 1.0501 | 1.0451 | 1.0369 | 1.0256 | 1.0114 | (0,2.42) |
6 | 2.5 | 1.1837 | 1.1772 | 1.1582 | 1.1279 | 1.0880 | 1.0406 | (0,2.44) |
| 3.0 | 1.1237 | 1.1195 | 1.1071 | 1.0870 | 1.0600 | 1.0273 | (0,2.44) |
| 3.5 | 1.0892 | 1.0863 | 1.0775 | 1.0631 | 1.0437 | 1.0197 | (0,2.43) |
| 4.0 | 1.0675 | 1.0653 | 1.0587 | 1.0479 | 1.0332 | 1.0149 | (0,2.43) |
| 4.5 | 1.0529 | 1.0512 | 1.0461 | 1.0377 | 1.0261 | 1.0116 | (0,2.42) |
| 5.0 | 1.0426 | 1.0413 | 1.0372 | 1.0304 | 1.0211 | 1.0094 | (0,2.42) |
7 | 2.5 | 1.1524 | 1.1471 | 1.1316 | 1.1066 | 1.0735 | 1.0337 | (0,2.44) |
| 3.0 | 1.1043 | 1.1008 | 1.0905 | 1.0736 | 1.0509 | 1.0230 | (0,2.43) |
| 3.5 | 1.0759 | 1.0734 | 1.0659 | 1.0538 | 1.0372 | 1.0167 | (0,2.43) |
| 4.0 | 1.0572 | 1.0554 | 1.0498 | 1.0407 | 1.0282 | 1.0126 | (0,2.42) |
| 4.5 | 1.0449 | 1.0434 | 1.0391 | 1.0320 | 1.0222 | 1.0099 | (0,2.42) |
| 5.0 | 1.0362 | 1.0350 | 1.0316 | 1.0258 | 1.0179 | 1.0079 | (0,2.42) |
8 | 2.5 | 1.1327 | 1.1282 | 1.1148 | 1.0932 | 1.0643 | 1.0293 | (0,2.44) |
| 3.0 | 1.0907 | 1.0877 | 1.0787 | 1.0641 | 1.0444 | 1.0200 | (0,2.43) |
| 3.5 | 1.0669 | 1.0647 | 1.0582 | 1.0475 | 1.0329 | 1.0147 | (0,2.43) |
| 4.0 | 1.0497 | 1.0481 | 1.0433 | 1.0354 | 1.0245 | 1.0109 | (0,2.42) |
| 4.5 | 1.0384 | 1.0372 | 1.0335 | 1.0274 | 1.0190 | 1.0084 | (0,2.42) |
| 5.0 | 1.0315 | 1.0305 | 1.0275 | 1.0225 | 1.0156 | 1.0069 | (0,2.42) |
| |
| Range of λ in which is efficient to T01 |
n | ß | λ = 1.00 | λ = 1.25 and λ = 0.75 | λ = 1.50 and λ = 0.50 | λ = 1.75 and λ = 0.25 | λ = 2.00 and λ = 0.00 |
2 | 2.5 | 1.3371 | 1.3095 | 1.2332 | 1.1240 | 1.0000 | [0,2] |
| 3.0 | 1.2158 | 1.1996 | 1.1536 | 1.0842 | 1.0000 | [0,2] |
| 3.5 | 1.1514 | 1.1406 | 1.1094 | 1.0610 | 1.0000 | [0,2] |
| 4.0 | 1.1126 | 1.1048 | 1.0821 | 1.0463 | 1.0000 | [0,2] |
| 4.5 | 1.0872 | 1.0813 | 1.0640 | 1.0364 | 1.0000 | [0,2] |
| 5.0 | 1.0697 | 1.0650 | 1.0514 | 1.0293 | 1.0000 | [0,2] |
3 | 2.5 | 1.2011 | 1.1862 | 1.1436 | 1.0790 | 1.0000 | [0,2] |
| 3.0 | 1.1308 | 1.1216 | 1.0950 | 1.0533 | 1.0000 | [0,2] |
| 3.5 | 1.0937 | 1.0873 | 1.0687 | 1.0389 | 1.0000 | [0,2] |
| 4.0 | 1.0706 | 1.0659 | 1.0520 | 1.0297 | 1.0000 | [0,2] |
| 4.5 | 1.0552 | 1.0515 | 1.0408 | 1.0234 | 1.0000 | [0,2] |
| 5.0 | 1.0443 | 1.0414 | 1.0329 | 1.0189 | 1.0000 | [0,2] |
4 | 2.5 | 1.1392 | 1.1294 | 1.1009 | 1.0565 | 1.0000 | [0,2] |
| 3.0 | 1.0939 | 1.0875 | 1.0688 | 1.0390 | 1.0000 | [0,2] |
| 3.5 | 1.0678 | 1.0633 | 1.0500 | 1.0286 | 1.0000 | [0,2] |
| 4.0 | 1.0514 | 1.0480 | 1.0380 | 1.0218 | 1.0000 | [0,2] |
| 4.5 | 1.0413 | 1.0386 | 1.0307 | 1.0177 | 1.0000 | [0,2] |
| 5.0 | 1.0324 | 1.0304 | 1.0241 | 1.0139 | 1.0000 | [0,2] |
5 | 2.5 | 1.1078 | 1.1004 | 1.0787 | 1.0445 | 1.0000 | [0,2] |
| 3.0 | 1.0733 | 1.0684 | 1.0540 | 1.0308 | 1.0000 | [0,2] |
| 3.5 | 1.0531 | 1.0496 | 1.0393 | 1.0226 | 1.0000 | [0,2] |
| 4.0 | 1.0403 | 1.0377 | 1.0300 | 1.0173 | 1.0000 | [0,2] |
| 4.5 | 1.0316 | 1.0296 | 1.0235 | 1.0136 | 1.0000 | [0,2] |
| 5.0 | 1.0256 | 1.0239 | 1.0191 | 1.0110 | 1.0000 | [0,2] |
6 | 2.5 | 1.0880 | 1.0820 | 1.0646 | 1.0367 | 1.0000 | [0,2] |
| 3.0 | 1.0600 | 1.0561 | 1.0444 | 1.0254 | 1.0000 | [0,2] |
| 3.5 | 1.0437 | 1.0408 | 1.0324 | 1.0186 | 1.0000 | [0,2] |
| 4.0 | 1.0332 | 1.0311 | 1.0247 | 1.0143 | 1.0000 | [0,2] |
| 4.5 | 1.0261 | 1.0244 | 1.0195 | 1.0113 | 1.0000 | [0,2] |
| 5.0 | 1.0211 | 1.0197 | 1.0157 | 1.0091 | 1.0000 | [0,2] |
7 | 2.5 | 1.0735 | 1.0686 | 1.0541 | 1.0309 | 1.0000 | [0,2] |
| 3.0 | 1.0509 | 1.0475 | 1.0377 | 1.0216 | 1.0000 | [0,2] |
| 3.5 | 1.0372 | 1.0348 | 1.0277 | 1.0160 | 1.0000 | [0,2] |
| 4.0 | 1.0282 | 1.0264 | 1.0210 | 1.0122 | 1.0000 | [0,2] |
| 4.5 | 1.0222 | 1.0208 | 1.0166 | 1.0096 | 1.0000 | [0,2] |
| 5.0 | 1.0179 | 1.0168 | 1.0134 | 1.0078 | 1.0000 | [0,2] |
8 | 2.5 | 1.0643 | 1.0600 | 1.0474 | 1.0271 | 1.0000 | [0,2] |
| 3.0 | 1.0444 | 1.0415 | 1.0329 | 1.0189 | 1.0000 | [0,2] |
| 3.5 | 1.0329 | 1.0308 | 1.0245 | 1.0141 | 1.0000 | [0,2] |
| 4.0 | 1.0245 | 1.0230 | 1.0183 | 1.0106 | 1.0000 | [0,2] |
| 4.5 | 1.0190 | 1.0178 | 1.0142 | 1.0082 | 1.0000 | [0,2] |
| 5.0 | 1.0156 | 1.0146 | 1.0117 | 1.0068 | 1.0000 | [0,2] |
Table 3.
The values of ei for i = 10 and 11
| |
| Range of λ in which is efficient to t2 |
n | ß | λ = 1.00 | λ = 1.25 and λ = 0.75 | λ = 1.50 and λ = 0.50 | λ = 1.75 and λ = 0.25 | λ = 2.00 | λ = 2.25 |
2 | 2.5 | 1.9669 | 1.9186 | 1.7871 | 1.6038 | 1.4025 | 1.2075 | (0,2.55) |
| 3.0 | 1.4347 | 1.4171 | 1.3671 | 1.2910 | 1.1978 | 1.0960 | (0,2.48) |
| 3.5 | 1.2665 | 1.2566 | 1.2280 | 1.1830 | 1.1254 | 1.0590 | (0,2.46) |
| 4.0 | 1.1849 | 1.1784 | 1.1592 | 1.1287 | 1.0885 | 1.0409 | (0,2.45) |
| 4.5 | 1.1374 | 1.1327 | 1.1188 | 1.0964 | 1.0665 | 1.0304 | (0,2.44) |
| 5.0 | 1.1069 | 1.1033 | 1.0926 | 1.0754 | 1.0521 | 1.0236 | (0,2.43) |
3 | 2.5 | 1.4171 | 1.4004 | 1.3527 | 1.2800 | 1.1904 | 1.0922 | (0,2.48) |
| 3.0 | 1.2034 | 1.1961 | 1.1749 | 1.1411 | 1.0970 | 1.0450 | (0,2.45) |
| 3.5 | 1.1292 | 1.1248 | 1.1118 | 1.0908 | 1.0626 | 1.0285 | (0,2.44) |
| 4.0 | 1.0914 | 1.0884 | 1.0794 | 1.0646 | 1.0447 | 1.0202 | (0,2.43) |
| 4.5 | 1.0688 | 1.0665 | 1.0598 | 1.0488 | 1.0338 | 1.0151 | (0,2.43) |
| 5.0 | 1.0539 | 1.0522 | 1.0470 | 1.0384 | 1.0266 | 1.0119 | (0,2.42) |
4 | 2.5 | 1.2360 | 1.2274 | 1.2024 | 1.1629 | 1.1118 | 1.0523 | (0,2.45) |
| 3.0 | 1.1199 | 1.1158 | 1.1038 | 1.0843 | 1.0582 | 1.0265 | (0,2.43) |
| 3.5 | 1.0775 | 1.0749 | 1.0673 | 1.0549 | 1.0380 | 1.0171 | (0,2.43) |
| 4.0 | 1.0554 | 1.0536 | 1.0482 | 1.0394 | 1.0273 | 1.0122 | (0,2.42) |
| 4.5 | 1.0419 | 1.0406 | 1.0366 | 1.0299 | 1.0208 | 1.0092 | (0,2.42) |
| 5.0 | 1.0330 | 1.0320 | 1.0288 | 1.0236 | 1.0164 | 1.0072 | (0,2.42) |
5 | 2.5 | 1.1534 | 1.1481 | 1.1325 | 1.1073 | 1.0740 | 1.0339 | (0,2.44) |
| 3.0 | 1.0798 | 1.0771 | 1.0693 | 1.0565 | 1.0391 | 1.0176 | (0,2.43) |
| 3.5 | 1.0521 | 1.0504 | 1.0454 | 1.0371 | 1.0257 | 1.0115 | (0,2.42) |
| 4.0 | 1.0375 | 1.0363 | 1.0327 | 1.0267 | 1.0186 | 1.0082 | (0,2.42) |
| 4.5 | 1.0285 | 1.0276 | 1.0249 | 1.0204 | 1.0141 | 1.0062 | (0,2.42) |
| 5.0 | 1.0225 | 1.0218 | 1.0196 | 1.0161 | 1.0112 | 1.0049 | (0,2.42) |
6 | 2.5 | 1.1084 | 1.1047 | 1.0939 | 1.0764 | 1.0528 | 1.0239 | (0,2.43) |
| 3.0 | 1.0572 | 1.0554 | 1.0498 | 1.0407 | 1.0282 | 1.0126 | (0,2.42) |
| 3.5 | 1.0377 | 1.0365 | 1.0328 | 1.0269 | 1.0187 | 1.0083 | (0,2.42) |
| 4.0 | 1.0272 | 1.0263 | 1.0237 | 1.0194 | 1.0135 | 1.0060 | (0,2.42) |
| 4.5 | 1.0207 | 1.0201 | 1.0181 | 1.0148 | 1.0103 | 1.0045 | (0,2.42) |
| 5.0 | 1.0164 | 1.0159 | 1.0143 | 1.0117 | 1.0082 | 1.0036 | (0,2.42) |
7 | 2.5 | 1.0809 | 1.0783 | 1.0703 | 1.0573 | 1.0397 | 1.0178 | (0,2.43) |
| 3.0 | 1.0433 | 1.0419 | 1.0377 | 1.0308 | 1.0214 | 1.0095 | (0,2.42) |
| 3.5 | 1.0295 | 1.0286 | 1.0258 | 1.0211 | 1.0147 | 1.0065 | (0,2.42) |
| 4.0 | 1.0207 | 1.0200 | 1.0181 | 1.0148 | 1.0103 | 1.0045 | (0,2.42) |
| 4.5 | 1.0158 | 1.0153 | 1.0138 | 1.0113 | 1.0079 | 1.0035 | (0,2.42) |
| 5.0 | 1.0125 | 1.0121 | 1.0109 | 1.0090 | 1.0062 | 1.0027 | (0,2.42) |
8 | 2.5 | 1.0629 | 1.0609 | 1.0548 | 1.0447 | 1.0310 | 1.0138 | (0,2.43) |
| 3.0 | 1.0339 | 1.0328 | 1.0296 | 1.0242 | 1.0168 | 1.0074 | (0,2.42) |
| 3.5 | 1.0225 | 1.0218 | 1.0197 | 1.0161 | 1.0112 | 1.0049 | (0,2.42) |
| 4.0 | 1.0163 | 1.0158 | 1.0143 | 1.0117 | 1.0081 | 1.0036 | (0,2.42) |
| 4.5 | 1.0125 | 1.0121 | 1.0109 | 1.0090 | 1.0062 | 1.0027 | (0,2.42) |
| 5.0 | 1.0099 | 1.0096 | 1.0087 | 1.0071 | 1.0049 | 1.0022 | (0,2.42) |
| |
| Range of λ in which is efficient to T02 |
n | ß | λ = 1.00 | λ = 1.25 and λ = 0.75 | λ = 1.50 and λ = 0.50 | λ = 1.75 and λ = 0.25 | λ = 2.00 and λ = 0.00 |
2 | 2.5 | 1.4025 | 1.3680 | 1.2743 | 1.1436 | 1.0000 | [0,2] |
| 3.0 | 1.1978 | 1.1831 | 1.1413 | 1.0779 | 1.0000 | [0,2] |
| 3.5 | 1.1254 | 1.1166 | 1.0912 | 1.0512 | 1.0000 | [0,2] |
| 4.0 | 1.0885 | 1.0825 | 1.0650 | 1.0369 | 1.0000 | [0,2] |
| 4.5 | 1.0665 | 1.0621 | 1.0491 | 1.0280 | 1.0000 | [0,2] |
| 5.0 | 1.0521 | 1.0487 | 1.0386 | 1.0221 | 1.0000 | [0,2] |
3 | 2.5 | 1.1904 | 1.1764 | 1.1363 | 1.0752 | 1.0000 | [0,2] |
| 3.0 | 1.0970 | 1.0904 | 1.0710 | 1.0402 | 1.0000 | [0,2] |
| 3.5 | 1.0626 | 1.0585 | 1.0463 | 1.0265 | 1.0000 | [0,2] |
| 4.0 | 1.0447 | 1.0418 | 1.0332 | 1.0191 | 1.0000 | [0,2] |
| 4.5 | 1.0338 | 1.0316 | 1.0252 | 1.0145 | 1.0000 | [0,2] |
| 5.0 | 1.0266 | 1.0249 | 1.0198 | 1.0115 | 1.0000 | [0,2] |
4 | 2.5 | 1.1118 | 1.1040 | 1.0815 | 1.0460 | 1.0000 | [0,2] |
| 3.0 | 1.0582 | 1.0544 | 1.0430 | 1.0247 | 1.0000 | [0,2] |
| 3.5 | 1.0380 | 1.0356 | 1.0282 | 1.0163 | 1.0000 | [0,2] |
| 4.0 | 1.0273 | 1.0256 | 1.0203 | 1.0118 | 1.0000 | [0,2] |
| 4.5 | 1.0208 | 1.0194 | 1.0155 | 1.0090 | 1.0000 | [0,2] |
| 5.0 | 1.0164 | 1.0153 | 1.0122 | 1.0071 | 1.0000 | [0,2] |
5 | 2.5 | 1.0740 | 1.0690 | 1.0545 | 1.0311 | 1.0000 | [0,2] |
| 3.0 | 1.0391 | 1.0366 | 1.0291 | 1.0167 | 1.0000 | [0,2] |
| 3.5 | 1.0257 | 1.0241 | 1.0192 | 1.0111 | 1.0000 | [0,2] |
| 4.0 | 1.0186 | 1.0174 | 1.0139 | 1.0080 | 1.0000 | [0,2] |
| 4.5 | 1.0141 | 1.0132 | 1.0106 | 1.0061 | 1.0000 | [0,2] |
| 5.0 | 1.0112 | 1.0105 | 1.0084 | 1.0049 | 1.0000 | [0,2] |
6 | 2.5 | 1.0528 | 1.0493 | 1.0391 | 1.0224 | 1.0000 | [0,2] |
| 3.0 | 1.0282 | 1.0264 | 1.0210 | 1.0122 | 1.0000 | [0,2] |
| 3.5 | 1.0187 | 1.0175 | 1.0139 | 1.0081 | 1.0000 | [0,2] |
| 4.0 | 1.0135 | 1.0126 | 1.0101 | 1.0059 | 1.0000 | [0,2] |
| 4.5 | 1.0103 | 1.0097 | 1.0077 | 1.0045 | 1.0000 | [0,2] |
| 5.0 | 1.0082 | 1.0076 | 1.0061 | 1.0036 | 1.0000 | [0,2] |
7 | 2.5 | 1.0397 | 1.0371 | 1.0295 | 1.0170 | 1.0000 | [0,2] |
| 3.0 | 1.0214 | 1.0200 | 1.0160 | 1.0093 | 1.0000 | [0,2] |
| 3.5 | 1.0147 | 1.0137 | 1.0110 | 1.0064 | 1.0000 | [0,2] |
| 4.0 | 1.0103 | 1.0097 | 1.0077 | 1.0045 | 1.0000 | [0,2] |
| 4.5 | 1.0079 | 1.0074 | 1.0059 | 1.0034 | 1.0000 | [0,2] |
| 5.0 | 1.0062 | 1.0058 | 1.0047 | 1.0027 | 1.0000 | [0,2] |
8 | 2.5 | 1.0310 | 1.0290 | 1.0231 | 1.0133 | 1.0000 | [0,2] |
| 3.0 | 1.0168 | 1.0158 | 1.0126 | 1.0073 | 1.0000 | [0,2] |
| 3.5 | 1.0112 | 1.0105 | 1.0084 | 1.0049 | 1.0000 | [0,2] |
| 4.0 | 1.0081 | 1.0076 | 1.0061 | 1.0035 | 1.0000 | [0,2] |
| 4.5 | 1.0062 | 1.0058 | 1.0047 | 1.0027 | 1.0000 | [0,2] |
| 5.0 | 1.0049 | 1.0046 | 1.0037 | 1.0022 | 1.0000 | [0,2] |
Table 4.
The values of ei for i = 12 and 13
| |
| Range of λ in which is efficient to t3 |
n | ß | λ = 1.00 | λ = 1.25 and λ = 0.75 | λ = 1.50 and λ = 0.50 | λ = 1.75 and λ = 0.25 | λ = 2.00 | λ = 2.25 |
2 | 2.5 | 1.6380 | 1.6099 | 1.5309 | 1.4152 | 1.2799 | 1.1397 | (0,2.51) |
| 3.0 | 1.3628 | 1.3487 | 1.3080 | 1.2455 | 1.1674 | 1.0803 | (0,2.47) |
| 3.5 | 1.2398 | 1.2311 | 1.2056 | 1.1654 | 1.1135 | 1.0531 | (0,2.45) |
| 4.0 | 1.1723 | 1.1663 | 1.1485 | 1.1202 | 1.0827 | 1.0381 | (0,2.44) |
| 4.5 | 1.1306 | 1.1262 | 1.1130 | 1.0917 | 1.0633 | 1.0288 | (0,2.44) |
| 5.0 | 1.1028 | 1.0993 | 1.0891 | 1.0725 | 1.0501 | 1.0227 | (0,2.43) |
3 | 2.5 | 1.2499 | 1.2407 | 1.2141 | 1.1721 | 1.1180 | 1.0553 | (0,2.46) |
| 3.0 | 1.1560 | 1.1506 | 1.1347 | 1.1091 | 1.0752 | 1.0345 | (0,2.44) |
| 3.5 | 1.1080 | 1.1044 | 1.0936 | 1.0761 | 1.0526 | 1.0238 | (0,2.43) |
| 4.0 | 1.0797 | 1.0771 | 1.0692 | 1.0565 | 1.0391 | 1.0176 | (0,2.43) |
| 4.5 | 1.0614 | 1.0594 | 1.0535 | 1.0437 | 1.0303 | 1.0135 | (0,2.42) |
| 5.0 | 1.0489 | 1.0473 | 1.0426 | 1.0348 | 1.0242 | 1.0107 | (0,2.42) |
4 | 2.5 | 1.1338 | 1.1293 | 1.1158 | 1.0940 | 1.0648 | 1.0296 | (0,2.44) |
| 3.0 | 1.0867 | 1.0838 | 1.0753 | 1.0613 | 1.0424 | 1.0191 | (0,2.43) |
| 3.5 | 1.0612 | 1.0592 | 1.0533 | 1.0435 | 1.0301 | 1.0135 | (0,2.42) |
| 4.0 | 1.0457 | 1.0442 | 1.0398 | 1.0326 | 1.0226 | 1.0100 | (0,2.42) |
| 4.5 | 1.0355 | 1.0344 | 1.0310 | 1.0253 | 1.0176 | 1.0078 | (0,2.42) |
| 5.0 | 1.0284 | 1.0275 | 1.0248 | 1.0203 | 1.0141 | 1.0062 | (0,2.42) |
5 | 2.5 | 1.0835 | 1.0808 | 1.0726 | 1.0592 | 1.0409 | 1.0184 | (0,2.43) |
| 3.0 | 1.0551 | 1.0533 | 1.0480 | 1.0392 | 1.0272 | 1.0121 | (0,2.42) |
| 3.5 | 1.0393 | 1.0381 | 1.0343 | 1.0281 | 1.0195 | 1.0086 | (0,2.42) |
| 4.0 | 1.0295 | 1.0286 | 1.0258 | 1.0211 | 1.0147 | 1.0065 | (0,2.42) |
| 4.5 | 1.0231 | 1.0223 | 1.0201 | 1.0165 | 1.0115 | 1.0051 | (0,2.42) |
| 5.0 | 1.0185 | 1.0179 | 1.0162 | 1.0133 | 1.0092 | 1.0041 | (0,2.42) |
6 | 2.5 | 1.0571 | 1.0553 | 1.0497 | 1.0406 | 1.0282 | 1.0126 | (0,2.42) |
| 3.0 | 1.0381 | 1.0369 | 1.0332 | 1.0272 | 1.0189 | 1.0084 | (0,2.42) |
| 3.5 | 1.0274 | 1.0265 | 1.0239 | 1.0196 | 1.0136 | 1.0060 | (0,2.42) |
| 4.0 | 1.0206 | 1.0200 | 1.0180 | 1.0148 | 1.0103 | 1.0045 | (0,2.42) |
| 4.5 | 1.0161 | 1.0156 | 1.0141 | 1.0116 | 1.0080 | 1.0035 | (0,2.42) |
| 5.0 | 1.0130 | 1.0126 | 1.0113 | 1.0093 | 1.0065 | 1.0028 | (0,2.42) |
7 | 2.5 | 1.0415 | 1.0402 | 1.0362 | 1.0296 | 1.0206 | 1.0091 | (0,2.42) |
| 3.0 | 1.0279 | 1.0270 | 1.0244 | 1.0200 | 1.0139 | 1.0061 | (0,2.42) |
| 3.5 | 1.0213 | 1.0206 | 1.0186 | 1.0152 | 1.0106 | 1.0047 | (0,2.42) |
| 4.0 | 1.0152 | 1.0147 | 1.0133 | 1.0109 | 1.0076 | 1.0033 | (0,2.42) |
| 4.5 | 1.0119 | 1.0116 | 1.0104 | 1.0086 | 1.0060 | 1.0026 | (0,2.42) |
| 5.0 | 1.0096 | 1.0093 | 1.0084 | 1.0069 | 1.0048 | 1.0021 | (0,2.42) |
8 | 2.5 | 1.0316 | 1.0306 | 1.0275 | 1.0226 | 1.0157 | 1.0069 | (0,2.42) |
| 3.0 | 1.0213 | 1.0207 | 1.0186 | 1.0153 | 1.0106 | 1.0047 | (0,2.42) |
| 3.5 | 1.0154 | 1.0149 | 1.0135 | 1.0111 | 1.0077 | 1.0034 | (0,2.42) |
| 4.0 | 1.0117 | 1.0113 | 1.0102 | 1.0084 | 1.0058 | 1.0026 | (0,2.42) |
| 4.5 | 1.0092 | 1.0089 | 1.0080 | 1.0066 | 1.0046 | 1.0020 | (0,2.42) |
| 5.0 | 1.0074 | 1.0072 | 1.0065 | 1.0053 | 1.0037 | 1.0016 | (0,2.42) |
| |
| Range of λ in which is efficient to
T03 |
n | ß | λ = 1.00 | λ = 1.25 and λ = 0.75 | λ = 1.50 and λ = 0.50 | λ = 1.75 and λ = 0.25 | λ = 2.00 and λ = 0.00 |
2 | 2.5 | 1.2799 | 1.2578 | 1.1962 | 1.1058 | 1.0000 | [0,2] |
| 3.0 | 1.1674 | 1.1553 | 1.1205 | 1.0669 | 1.0000 | [0,2] |
| 3.5 | 1.1135 | 1.1056 | 1.0828 | 1.0467 | 1.0000 | [0,2] |
| 4.0 | 1.0827 | 1.0772 | 1.0608 | 1.0346 | 1.0000 | [0,2] |
| 4.5 | 1.0633 | 1.0591 | 1.0467 | 1.0267 | 1.0000 | [0,2] |
| 5.0 | 1.0501 | 1.0469 | 1.0371 | 1.0213 | 1.0000 | [0,2] |
3 | 2.5 | 1.1180 | 1.1098 | 1.0859 | 1.0484 | 1.0000 | [0,2] |
| 3.0 | 1.0752 | 1.0702 | 1.0553 | 1.0316 | 1.0000 | [0,2] |
| 3.5 | 1.0526 | 1.0492 | 1.0389 | 1.0224 | 1.0000 | [0,2] |
| 4.0 | 1.0391 | 1.0365 | 1.0290 | 1.0167 | 1.0000 | [0,2] |
| 4.5 | 1.0303 | 1.0283 | 1.0225 | 1.0130 | 1.0000 | [0,2] |
| 5.0 | 1.0242 | 1.0226 | 1.0180 | 1.0104 | 1.0000 | [0,2] |
4 | 2.5 | 1.0648 | 1.0605 | 1.0478 | 1.0274 | 1.0000 | [0,2] |
| 3.0 | 1.0424 | 1.0397 | 1.0315 | 1.0181 | 1.0000 | [0,2] |
| 3.5 | 1.0301 | 1.0282 | 1.0224 | 1.0130 | 1.0000 | [0,2] |
| 4.0 | 1.0226 | 1.0211 | 1.0168 | 1.0098 | 1.0000 | [0,2] |
| 4.5 | 1.0176 | 1.0165 | 1.0131 | 1.0076 | 1.0000 | [0,2] |
| 5.0 | 1.0141 | 1.0132 | 1.0105 | 1.0061 | 1.0000 | [0,2] |
5 | 2.5 | 1.0409 | 1.0383 | 1.0304 | 1.0175 | 1.0000 | [0,2] |
| 3.0 | 1.0272 | 1.0254 | 1.0203 | 1.0117 | 1.0000 | [0,2] |
| 3.5 | 1.0195 | 1.0182 | 1.0145 | 1.0084 | 1.0000 | [0,2] |
| 4.0 | 1.0147 | 1.0137 | 1.0110 | 1.0064 | 1.0000 | [0,2] |
| 4.5 | 1.0115 | 1.0107 | 1.0086 | 1.0050 | 1.0000 | [0,2] |
| 5.0 | 1.0092 | 1.0086 | 1.0069 | 1.0040 | 1.0000 | [0,2] |
6 | 2.5 | 1.0282 | 1.0264 | 1.0210 | 1.0121 | 1.0000 | [0,2] |
| 3.0 | 1.0189 | 1.0177 | 1.0141 | 1.0082 | 1.0000 | [0,2] |
| 3.5 | 1.0136 | 1.0127 | 1.0102 | 1.0059 | 1.0000 | [0,2] |
| 4.0 | 1.0103 | 1.0096 | 1.0077 | 1.0045 | 1.0000 | [0,2] |
| 4.5 | 1.0080 | 1.0075 | 1.0060 | 1.0035 | 1.0000 | [0,2] |
| 5.0 | 1.0065 | 1.0061 | 1.0048 | 1.0028 | 1.0000 | [0,2] |
7 | 2.5 | 1.0206 | 1.0193 | 1.0153 | 1.0089 | 1.0000 | [0,2] |
| 3.0 | 1.0139 | 1.0130 | 1.0104 | 1.0060 | 1.0000 | [0,2] |
| 3.5 | 1.0106 | 1.0099 | 1.0079 | 1.0046 | 1.0000 | [0,2] |
| 4.0 | 1.0076 | 1.0071 | 1.0057 | 1.0033 | 1.0000 | [0,2] |
| 4.5 | 1.0060 | 1.0056 | 1.0045 | 1.0026 | 1.0000 | [0,2] |
| 5.0 | 1.0048 | 1.0045 | 1.0036 | 1.0021 | 1.0000 | [0,2] |
8 | 2.5 | 1.0157 | 1.0147 | 1.0117 | 1.0068 | 1.0000 | [0,2] |
| 3.0 | 1.0106 | 1.0099 | 1.0079 | 1.0046 | 1.0000 | [0,2] |
| 3.5 | 1.0077 | 1.0072 | 1.0057 | 1.0033 | 1.0000 | [0,2] |
| 4.0 | 1.0058 | 1.0055 | 1.0044 | 1.0025 | 1.0000 | [0,2] |
| 4.5 | 1.0046 | 1.0043 | 1.0034 | 1.0020 | 1.0000 | [0,2] |
| 5.0 | 1.0037 | 1.0035 | 1.0028 | 1.0016 | 1.0000 | [0,2] |
Table 5.
The values of ei for i = 14 and 15
| |
| Range of λ in which is efficient to t4 |
n | ß | λ = 1.00 | λ = 1.25 and λ = 0.75 | λ = 1.50 and λ = 0.50 | λ = 1.75 and λ = 0.25 | λ = 2.00 | λ = 2.25 |
2 | 2.5 | 1.6380 | 1.6099 | 1.5309 | 1.4152 | 1.2799 | 1.1397 | (0,2.51) |
| 3.0 | 1.3628 | 1.3487 | 1.3080 | 1.2455 | 1.1674 | 1.0803 | (0,2.47) |
| 3.5 | 1.2398 | 1.2311 | 1.2056 | 1.1654 | 1.1135 | 1.0531 | (0,2.45) |
| 4.0 | 1.1723 | 1.1663 | 1.1485 | 1.1202 | 1.0827 | 1.0381 | (0,2.44) |
| 4.5 | 1.1306 | 1.1262 | 1.1130 | 1.0917 | 1.0633 | 1.0288 | (0,2.44) |
| 5.0 | 1.1028 | 1.0993 | 1.0891 | 1.0725 | 1.0501 | 1.0227 | (0,2.43) |
3 | 2.5 | 1.1733 | 1.1672 | 1.1494 | 1.1209 | 1.0832 | 1.0383 | (0,2.44) |
| 3.0 | 1.1116 | 1.1078 | 1.0967 | 1.0786 | 1.0543 | 1.0246 | (0,2.43) |
| 3.5 | 1.0785 | 1.0759 | 1.0682 | 1.0557 | 1.0385 | 1.0173 | (0,2.43) |
| 4.0 | 1.0585 | 1.0566 | 1.0509 | 1.0416 | 1.0288 | 1.0129 | (0,2.42) |
| 4.5 | 1.0454 | 1.0439 | 1.0396 | 1.0324 | 1.0224 | 1.0100 | (0,2.42) |
| 5.0 | 1.0363 | 1.0351 | 1.0316 | 1.0259 | 1.0180 | 1.0080 | (0,2.42) |
4 | 2.5 | 1.0976 | 1.0944 | 1.0847 | 1.0690 | 1.0477 | 1.0215 | (0,2.43) |
| 3.0 | 1.0644 | 1.0623 | 1.0561 | 1.0458 | 1.0317 | 1.0142 | (0,2.43) |
| 3.5 | 1.0459 | 1.0445 | 1.0400 | 1.0327 | 1.0227 | 1.0101 | (0,2.42) |
| 4.0 | 1.0345 | 1.0334 | 1.0301 | 1.0247 | 1.0171 | 1.0076 | (0,2.42) |
| 4.5 | 1.0269 | 1.0261 | 1.0235 | 1.0193 | 1.0134 | 1.0059 | (0,2.42) |
| 5.0 | 1.0216 | 1.0209 | 1.0189 | 1.0155 | 1.0107 | 1.0047 | (0,2.42) |
5 | 2.5 | 1.0563 | 1.0545 | 1.0490 | 1.0401 | 1.0278 | 1.0124 | (0,2.42) |
| 3.0 | 1.0378 | 1.0366 | 1.0330 | 1.0270 | 1.0187 | 1.0083 | (0,2.42) |
| 3.5 | 1.0272 | 1.0264 | 1.0238 | 1.0195 | 1.0135 | 1.0060 | (0,2.42) |
| 4.0 | 1.0203 | 1.0197 | 1.0178 | 1.0146 | 1.0101 | 1.0045 | (0,2.42) |
| 4.5 | 1.0161 | 1.0156 | 1.0141 | 1.0116 | 1.0080 | 1.0035 | (0,2.42) |
| 5.0 | 1.0130 | 1.0126 | 1.0113 | 1.0093 | 1.0065 | 1.0028 | (0,2.42) |
6 | 2.5 | 1.0395 | 1.0382 | 1.0344 | 1.0282 | 1.0196 | 1.0087 | (0,2.42) |
| 3.0 | 1.0267 | 1.0258 | 1.0233 | 1.0191 | 1.0133 | 1.0059 | (0,2.42) |
| 3.5 | 1.0193 | 1.0187 | 1.0169 | 1.0138 | 1.0096 | 1.0042 | (0,2.42) |
| 4.0 | 1.0146 | 1.0142 | 1.0128 | 1.0105 | 1.0073 | 1.0032 | (0,2.42) |
| 4.5 | 1.0115 | 1.0111 | 1.0100 | 1.0082 | 1.0057 | 1.0025 | (0,2.42) |
| 5.0 | 1.0092 | 1.0090 | 1.0081 | 1.0066 | 1.0046 | 1.0020 | (0,2.42) |
7 | 2.5 | 1.0278 | 1.0269 | 1.0243 | 1.0199 | 1.0138 | 1.0061 | (0,2.42) |
| 3.0 | 1.0189 | 1.0183 | 1.0165 | 1.0135 | 1.0094 | 1.0041 | (0,2.42) |
| 3.5 | 1.0137 | 1.0133 | 1.0120 | 1.0098 | 1.0068 | 1.0030 | (0,2.42) |
| 4.0 | 1.0104 | 1.0101 | 1.0091 | 1.0075 | 1.0052 | 1.0023 | (0,2.42) |
| 4.5 | 1.0082 | 1.0079 | 1.0071 | 1.0059 | 1.0041 | 1.0018 | (0,2.42) |
| 5.0 | 1.0066 | 1.0064 | 1.0058 | 1.0047 | 1.0033 | 1.0014 | (0,2.42) |
8 | 2.5 | 1.0214 | 1.0207 | 1.0187 | 1.0153 | 1.0107 | 1.0047 | (0,2.42) |
| 3.0 | 1.0146 | 1.0142 | 1.0128 | 1.0105 | 1.0073 | 1.0032 | (0,2.42) |
| 3.5 | 1.0106 | 1.0103 | 1.0093 | 1.0076 | 1.0053 | 1.0023 | (0,2.42) |
| 4.0 | 1.0081 | 1.0078 | 1.0071 | 1.0058 | 1.0040 | 1.0018 | (0,2.42) |
| 4.5 | 1.0064 | 1.0062 | 1.0056 | 1.0046 | 1.0032 | 1.0014 | (0,2.42) |
| 5.0 | 1.0051 | 1.0049 | 1.0044 | 1.0036 | 1.0025 | 1.0011 | (0,2.42) |
| |
| Range of λ in which is efficient to T04 |
n | ß | λ = 1.00 | λ = 1.25 and λ = 0.75 | λ = 1.50 and λ = 0.50 | λ = 1.75 and λ = 0.25 | λ = 2.00 and λ = 0.00 |
2 | 2.5 | 1.2799 | 1.2578 | 1.1962 | 1.1058 | 1.0000 | [0,2] |
| 3.0 | 1.1674 | 1.1553 | 1.1205 | 1.0669 | 1.0000 | [0,2] |
| 3.5 | 1.1135 | 1.1056 | 1.0828 | 1.0467 | 1.0000 | [0,2] |
| 4.0 | 1.0827 | 1.0772 | 1.0608 | 1.0346 | 1.0000 | [0,2] |
| 4.5 | 1.0633 | 1.0591 | 1.0467 | 1.0267 | 1.0000 | [0,2] |
| 5.0 | 1.0501 | 1.0469 | 1.0371 | 1.0213 | 1.0000 | [0,2] |
3 | 2.5 | 1.0832 | 1.0776 | 1.0611 | 1.0348 | 1.0000 | [0,2] |
| 3.0 | 1.0543 | 1.0508 | 1.0402 | 1.0231 | 1.0000 | [0,2] |
| 3.5 | 1.0385 | 1.0360 | 1.0286 | 1.0165 | 1.0000 | [0,2] |
| 4.0 | 1.0288 | 1.0270 | 1.0215 | 1.0124 | 1.0000 | [0,2] |
| 4.5 | 1.0224 | 1.0210 | 1.0167 | 1.0097 | 1.0000 | [0,2] |
| 5.0 | 1.0180 | 1.0168 | 1.0134 | 1.0078 | 1.0000 | [0,2] |
4 | 2.5 | 1.0477 | 1.0446 | 1.0353 | 1.0203 | 1.0000 | [0,2] |
| 3.0 | 1.0317 | 1.0297 | 1.0236 | 1.0136 | 1.0000 | [0,2] |
| 3.5 | 1.0227 | 1.0213 | 1.0169 | 1.0098 | 1.0000 | [0,2] |
| 4.0 | 1.0171 | 1.0160 | 1.0128 | 1.0074 | 1.0000 | [0,2] |
| 4.5 | 1.0134 | 1.0125 | 1.0100 | 1.0058 | 1.0000 | [0,2] |
| 5.0 | 1.0107 | 1.0101 | 1.0080 | 1.0047 | 1.0000 | [0,2] |
5 | 2.5 | 1.0278 | 1.0260 | 1.0207 | 1.0120 | 1.0000 | [0,2] |
| 3.0 | 1.0187 | 1.0175 | 1.0140 | 1.0081 | 1.0000 | [0,2] |
| 3.5 | 1.0135 | 1.0127 | 1.0101 | 1.0059 | 1.0000 | [0,2] |
| 4.0 | 1.0101 | 1.0095 | 1.0076 | 1.0044 | 1.0000 | [0,2] |
| 4.5 | 1.0080 | 1.0075 | 1.0060 | 1.0035 | 1.0000 | [0,2] |
| 5.0 | 1.0065 | 1.0061 | 1.0048 | 1.0028 | 1.0000 | [0,2] |
6 | 2.5 | 1.0196 | 1.0183 | 1.0146 | 1.0085 | 1.0000 | [0,2] |
| 3.0 | 1.0133 | 1.0124 | 1.0099 | 1.0058 | 1.0000 | [0,2] |
| 3.5 | 1.0096 | 1.0090 | 1.0072 | 1.0042 | 1.0000 | [0,2] |
| 4.0 | 1.0073 | 1.0068 | 1.0055 | 1.0032 | 1.0000 | [0,2] |
| 4.5 | 1.0057 | 1.0054 | 1.0043 | 1.0025 | 1.0000 | [0,2] |
| 5.0 | 1.0046 | 1.0043 | 1.0035 | 1.0020 | 1.0000 | [0,2] |
7 | 2.5 | 1.0138 | 1.0129 | 1.0103 | 1.0060 | 1.0000 | [0,2] |
| 3.0 | 1.0094 | 1.0088 | 1.0070 | 1.0041 | 1.0000 | [0,2] |
| 3.5 | 1.0068 | 1.0064 | 1.0051 | 1.0030 | 1.0000 | [0,2] |
| 4.0 | 1.0052 | 1.0049 | 1.0039 | 1.0023 | 1.0000 | [0,2] |
| 4.5 | 1.0041 | 1.0038 | 1.0031 | 1.0018 | 1.0000 | [0,2] |
| 5.0 | 1.0033 | 1.0031 | 1.0025 | 1.0014 | 1.0000 | [0,2] |
8 | 2.5 | 1.0107 | 1.0100 | 1.0080 | 1.0046 | 1.0000 | [0,2] |
| 3.0 | 1.0073 | 1.0068 | 1.0055 | 1.0032 | 1.0000 | [0,2] |
| 3.5 | 1.0053 | 1.0050 | 1.0040 | 1.0023 | 1.0000 | [0,2] |
| 4.0 | 1.0040 | 1.0038 | 1.0030 | 1.0018 | 1.0000 | [0,2] |
| 4.5 | 1.0032 | 1.0030 | 1.0024 | 1.0014 | 1.0000 | [0,2] |
| 5.0 | 1.0025 | 1.0024 | 1.0019 | 1.0011 | 1.0000 | [0,2] |
5. Conclusion
It is observed from Table 1 that the values of the relative efficiencies ei′ s,i = 1,2,…,7 of the proposed minimum mean squared error (MMSE) estimators T0i, i = 1,2,3,4 with respect to Lesitha and Thomas (2012) estimators ti′ s,i = 1,2,3,4 respectively are greater than ‘unity’. Thus, the proposed estimators T0i, i = 1,2,3,4 are more efficient than the corresponding usual estimators ti′ s,i = 1,2,3,4 respectively.
It is further observed that the values of the relative efficiency e5 of T04 with respect to T01 are the largest among ei′ s,i = 1,2,…,7, from which follows that the proposed MMSE estimator T04 is the best estimator among Lesitha and Thomas (2012) estimators ti′ s,i = 1,2,3,4 and MMSE estimators T0i,i = 1,2,3,4.
Tables 2 to 5 demonstrate that for fixed (n, β) the values of relative efficiencies ei′ s,i = 8,9,…,15 increase as λ increases up to 1, while it decreases if λ goes beyond ‘unity’. When the value of λ is unity (i.e. the guessed value α0 coincides with the true value α) a higher gain in efficiency is seen. For fixed values of (n, λ) the values of ei′ s,i = 8,9,…,15 decrease as β increases. When (β, λ) are fixed the values of ei′ s,i = 8,9,…,15 also decrease as sample size n increases. A higher gain in efficiency is obtained when the sample size n is small. In general, the estimators are more efficient than Lesitha and Thomas (2012) estimators ti′ s,i = 1,2,3,4 and MMSE estimators T0i, i = 1,2,3,4 respectively when λ∈(0,2.42). It is further observed that are respectively better than MMSE estimators T0i,i = 1,2,3,4 when λ∈[0,2].