AN APPLICATION OF FUNCTIONAL MULTIVARIATE REGRESSION MODEL TO MULTICLASS CLASSIFICATION

Publications

Share / Export Citation / Email / Print / Text size:

Statistics in Transition New Series

Polish Statistical Association

Central Statistical Office of Poland

Subject: Economics , Statistics & Probability

GET ALERTS

ISSN: 1234-7655
eISSN: 2450-0291

DESCRIPTION

4
Reader(s)
14
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 18 , ISSUE 3 (September 2017) > List of articles

AN APPLICATION OF FUNCTIONAL MULTIVARIATE REGRESSION MODEL TO MULTICLASS CLASSIFICATION

Mirosław Krzyśko / Łukasz Smaga

Keywords : functional data analysis, multi-label classification problem, multivariate functional data, regression model

Citation Information : Statistics in Transition New Series. Volume 18, Issue 3, Pages 433-442, DOI: https://doi.org/10.21307/stattrans-2016-079

License : (CC BY 4.0)

Published Online: 20-November-2017

ARTICLE

ABSTRACT

In this paper, the scale response functional multivariate regression model is considered. By using the basis functions representation of functional predictors and regression coefficients, this model is rewritten as a multivariate regression model. This representation of the functional multivariate regression model is used for multiclass classification for multivariate functional data. Computational experiments performed on real labelled data sets demonstrate the effectiveness of the proposed method for classification for functional data.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

BACHE, K., LICHMAN, M., (2013). UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science (http://archive.ics.uci.edu/ml).

 

BERRENDERO, J. R., JUSTEL, A., SVARC, M., (2011). Principal Components for Multivariate Functional Data. Computational Statistics & Data Analysis, 55, 2619–2634.

 

COLLAZOS, J. A. A., DIAS, R., ZAMBOM, A. Z., (2016). Consistent Variable Selection for Functional Regression Models. Journal of Multivariate Analysis, 146, 63–71.

 

FERRATY, F., VIEU, P., (2006). Nonparametric Functional Data Analysis: Theory and Practice, New York: Springer.

 

GÓRECKI, T., KRZYŚKO, M., WASZAK, Ł., WOŁYŃSKI, W., (2016). Selected Statistical Methods of Data Analysis for Multivariate Functional Data. Statistical Papers (Accepted) doi:10.1007/s00362-016-0757-8.

 

GÓRECKI, T., KRZYŚKO, M., WOŁYŃSKI, W., (2015). Classification Problem Based on Regression Models for Multidimensional Functional Data. Statistics in Transition new series, 16, 97 110.

 

GÓRECKI, T., SMAGA, Ł., (2017). Multivariate Analysis of Variance for Functional Data. Journal of Applied Statistics, 44, 2172–2189.

 

HORVÁTH, L., KOKOSZKA, P., (2012). Inference for Functional Data with Applications, New York: Springer.

 

JACQUES, J., PREDA, C., (2014). Model-Based Clustering for Multivariate Functional Data. Computational Statistics & Data Analysis, 71, 92–106.

 

KAYANO, M., KONISHI, S., (2009). Functional Principal Component Analysis via Regularized Gaussian Basis Expansions and its Application to Unbalanced Data. Journal of Statistical Planning and Inference, 139, 2388–2398.

 

KRZYŚKO, M., WASZAK, Ł., (2013). Canonical Correlation Analysis for Functional Data. Biometrical Letters, 50, 95–105.

 

KRZYŚKO, M., WOŁYŃSKI, W., GÓRECKI, T., SKORZYBUT, M., (2008). Learning Systems, Warsaw: WNT (in Polish).

 

MATSUI, H., (2014). Variable and Boundary Selection for Functional Data via Multiclass Logistic Regression Modeling. Computational Statistics & Data Analysis, 78, 176–185.

 

MATSUI, H., KONISHI, S., (2011). Variable Selection for Functional Regression Models via the L1 Regularization. Computational Statistics & Data Analysis, 55, 3304–3310.

 

OLSZEWSKI, R. T., (2001). Generalized Feature Extraction for Structural Pattern Recognition in Time-Series Data. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA (http://www.cs.cmu.edu/bobski).

 

RAMSAY, J. O., SILVERMAN, B. W., (2005). Functional Data Analysis, Second Edition, New York: Springer.

 

R DEVELOPMENT CORE TEAM, (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (https://www.R-project.org/).

 

RODRIGUEZ, J. J., ALONSO, C. J., MAESTRO, J. A., (2005). Support Vector Machines of Interval Based Features for Time Series Classification. Knowledge- Based Systems, 18, 171–178.

 

SHMUELI, G., (2010). To Explain or to Predict? Statistical Science, 25, 289–310.

 

ZHANG, J.-T., (2013). Analysis of Variance for Functional Data, London: Chapman & Hall.

 

EXTRA FILES

COMMENTS