OPTION FOR PREDICTING THE CZECH REPUBLIC'S FOREIGN TRADE TIME SERIES AS COMPONENTS IN GROSS DOMESTIC PRODUCT

Publications

Share / Export Citation / Email / Print / Text size:

Statistics in Transition New Series

Polish Statistical Association

Central Statistical Office of Poland

Subject: Economics , Statistics & Probability

GET ALERTS

ISSN: 1234-7655
eISSN: 2450-0291

DESCRIPTION

6
Reader(s)
25
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 18 , ISSUE 3 (September 2017) > List of articles

OPTION FOR PREDICTING THE CZECH REPUBLIC'S FOREIGN TRADE TIME SERIES AS COMPONENTS IN GROSS DOMESTIC PRODUCT

Luboš Marek / Stanislava Hronová / Richard Hindls

Keywords : transfer-function models, SARIMA models, quarterly estimates of the Gross Domestic Product (GDP), imports and exports of goods and services, exchange rate

Citation Information : Statistics in Transition New Series. Volume 18, Issue 3, Pages 481-500, DOI: https://doi.org/10.21307/stattrans-2016-082

License : (CC BY 4.0)

Published Online: 20-November-2017

ARTICLE

ABSTRACT

This paper analyses the time series observed for the foreign trade of the Czech Republic (CR) and predictions in such series with the aid of the SARIMA and transfer-function models. Our goal is to find models suitable for describing the time series of the exports and imports of goods and services from/to the CR and to subsequently use these models for predictions in quarterly estimates of the gross domestic product (GDP) component resources and utilization. As a result we get suitable models with a time lag, and predictions in the time series of the CR exports and imports several months ahead.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

AL-OSH, M., (1989). A Dynamic Linear Approach for Disaggregating Time Series Data, Journal of Forecasting, Vol. 8, pp. 85–96.
[CROSSREF]

ANDERSON, O. D., (1976). Time series analysis and forecasting – Box-Jenkins approach, London, Butterworth.
[CROSSREF]

BIKKER, R., DAALMANS, J., MUSHKUDIANI, N., (2013). Benchmarking large accounting frameworks: a generalized multivariate model, Economic Systems Research, Vol. 25, pp. 390–408.
[CROSSREF]

BOOT, J. C. G., FEIBES, W., LISMAN, J. H. C., (1967). Further Method of Derivation of Quarterly Figures from Annual Data, Applied Statistics, Vol. 16, pp. 65–75.
[CROSSREF]

BOURNAY, J., LAROQUE, G., (1979). Réflexions sur la méthode d´élaboration des comptes trimestriels, Annales de l'INSEE, Vol. 11, pp. 3–18.

BOX, G. E. P., JENKINS, G. M., REINSEL, G. C., (1994). Time series analysis, forecasting and control, Third edition. Prentice-Hall, Inc. Englewood Cliffs, New Jersey.
[CROSSREF]

DENTON, F. T., (1991). Adjustment of monthly and quarterly series to annual tools: An approach based on quadratic minimization, Journal of American Statistical Association, Vol. 66, pp. 99–102.
[CROSSREF]

DUREAU, G., (1991). Les comptes nationaux trimestriels, Paris: INSEE – Méthodes.
[CROSSREF]

FORNI, M., HALLIN, M., LIPPI, M., REICHLIN, L., (2005). The generalized factor model: one-sided estimation and forecasting. Journal of the American Statistical Association, Vol. 100, pp. 830–840.
[CROSSREF]

GRANGER, C. W. J., NEWBOLD, P., (1986). Forecasting Economic Time Series, Academic Press, New York.
[CROSSREF]

GREENE, W. H., (2012). Econometric Analysis, Pearson Education, Prentice Hall.
[CROSSREF]

EUROSTAT, (2013a). European System of Accounts (ESA 2010), Eurostat, Luxembourg.
[CROSSREF]

EUROSTAT, (2013b). Handbook on quarterly national accounts, Eurostat, Luxembourg.
[CROSSREF]

KOZÁK, J., HINDLS, R., HRONOVÁ, S., (2000). Some Remarks to the Methodology of the Allocation of Yearly Observations into Seasons, Statistics in Transition, Vol. 4, pp. 815–826.
[CROSSREF]

MAREK, L., HRONOVÁ, S., HINDLS, R., (2016). Příspěvek k časnějším odhadům hodnot čtvrtletních národních účtů [Contribution to the earlier estimations of quarterly national accounts], Politická ekonomie, Vol. 64, pp. 633–650.

MARINI, M., (2016). Nowcasting Annual National Accounts with Quarterly Indicators: An Assessment of Widely Used Benchmarking Methods. IMF Working Paper 16/71.
[CROSSREF]

MITCHELL, J., SMITH, R. J., WEALE, M. R., WRIGHT, S., SALAZAR, E. L., (2005). An Indicator of Monthly GDP and an Early Estimate of Quarterly GDP Growth. Economic Journal, Vol. 115, pp. 108–129.
[CROSSREF]

MOAURO, F., SAVIO, G., (2005). Temporal Disaggregation Using Multivariate Structural Time Series Models, Econometrics Journal, Vol. 8, pp. 214–234.
[CROSSREF]

NASSE, PH., (1973). Le système des comptes nationaux trimestrieles, Annales de l´INSEE, Vol. 5, pp. 119–161.
[CROSSREF]

PANKRATZ, A., (1991). Forecasting with dynamic regression models, John Wiley & Sons Inc., New York.
[CROSSREF]

PROIETTI, T., (2011). Multivariate temporal disaggregation with cross-sectional constraints, Journal of Applied Statistics, Vol. 38, pp. 1455–1466.
[CROSSREF]

THE SCA STATISTICAL SYSTEM, (1991). Reference manual for general statistical analysis, Scientific Associates Corp. Oak Brook, Illinois, USA.
[CROSSREF]

WEI, W. W. S., (2006). Time series analysis – univariate and multivariate methods, Pearson, Addison Wesley Publishing, New York.
[CROSSREF]

WEI, W. W. S., STRAM, D. O., (1990). Disaggregation of Time Series Models, Journal of Royal Statistical Society, Vol. 52, pp. 453–467.
[CROSSREF]

EXTRA FILES

COMMENTS