DISCRIMINANT COORDINATES ANALYSIS IN THE CASE OF MULTIVARIATE REPEATED MEASURES DATA

Publications

Share / Export Citation / Email / Print / Text size:

Statistics in Transition New Series

Polish Statistical Association

Central Statistical Office of Poland

Subject: Economics , Statistics & Probability

GET ALERTS

ISSN: 1234-7655
eISSN: 2450-0291

DESCRIPTION

5
Reader(s)
23
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 19 , ISSUE 3 (September 2018) > List of articles

DISCRIMINANT COORDINATES ANALYSIS IN THE CASE OF MULTIVARIATE REPEATED MEASURES DATA

Mirosław Krzyśko / Wojciech Łukaszonek / Waldemar Wołyński

Keywords : discriminant coordinates analysis, repeated measures data (doubly multivariate data), Kronecker product covariance structure, maximum likelihood estimates

Citation Information : Statistics in Transition New Series. Volume 19, Issue 3, Pages 495-506, DOI: https://doi.org/10.21307/stattrans-2018-027

License : (BY-NC-ND 4.0)

Published Online: 13-December-2018

ARTICLE

ABSTRACT

The main aim of the paper is to adapt the classical discriminant coordinates analysis to multivariate repeated measures data. The proposed solution is based on the relationship between the discriminant coordinates and canonical variables. The quality of these new discriminant coordinates is examined on some real data. 

Content not available PDF Share

FIGURES & TABLES

REFERENCES

BANERJEE, S., ROY, A., (2014). Linear Algebra and Matrix Analysis for Statistics. CRC Press, Boca Ratop.
FISHER, R. A., (1936). The use of multiple measurements in taxonomic problem. Annals of Eugenics 7, pp. 179–188.
FUJIKOSHI, Y., ULYANOV, V. V., SHIMIZU, R., (2010). Multivariate statistics. HighDimensional and Large-Sample Approximations. Hoboken, New Jersey.
GIRI, C. G., (1996). Multivariate Statistical Analysis. Marcel Dekker, Inc., New York.
GÓRECKI, T., KRZY´SKO, M., WASZAK, Ł., WOŁY´NSKI, W., (2018). Selected statistical methods of data analysis for multivariate functional data, Statistical Papers 59, pp. 153–182.
KRZANOWSKI, W. J., (2000). Principles of Multivariate Analysis, Revised Edition. Oxford University Press, Oxford.
KRZYSKO, M., (1979). Discriminant variables. Biometrical Journal 21 (3), pp. 227–241.
RAO, C. R., (1948). The utilization of multiple measurements in problem of biological classification. Journal of the Royal Statistical Society Series B, 10 (2), pp. 159–203.
R CORE TEAM, (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.Rproject.org/.
RENCHER, A. C., (1998). Multivariate Statistical Inference and Applications. Wiley, New York.
SEBER, G. A. F., (1984). Multivariate Observations. John Wiley and Sons, New York.

SRIVASTAVA, M. S., (2002). Methods of Multivariate Statistics. Wiley, New York.
SRIVASTAVA, M. S., VON ROSEN, T., VON ROSEN, D., (2008). Models with a Kronecker product covariance structure: estimation and testing. Mathematical Methods of Statistics 17 (4), pp. 357–370.

EXTRA FILES

COMMENTS