Discussion of "Small area estimation: its evolution in five decades", by Malay Ghosh

Publications

Share / Export Citation / Email / Print / Text size:

Statistics in Transition New Series

Polish Statistical Association

Central Statistical Office of Poland

Subject: Economics , Statistics & Probability

GET ALERTS

ISSN: 1234-7655
eISSN: 2450-0291

DESCRIPTION

4
Reader(s)
4
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 21 , ISSUE 4 (August 2020) > List of articles

Special Issue

Discussion of "Small area estimation: its evolution in five decades", by Malay Ghosh

Isabel Molina

Citation Information : Statistics in Transition New Series. Volume 21, Issue 4, Pages 40-44, DOI: https://doi.org/10.21307/stattrans-2020-026

License : (CC BY-NC-ND 4.0)

Received Date : 31-January-2020 / Accepted: 30-June-2020 / Published Online: 15-September-2020

ARTICLE

ABSTRACT

Content not available PDF Share

FIGURES & TABLES

REFERENCES

BATTESE, G. E., HARTER, R. M., FULLER, W. A., (1988). An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data, Journal of the American Statistical Association, 83, pp. 28−36.

CORRAL, P., MOLINA, I., NGUYEN, M., (2020). Pull your small area estimates up by the bootstraps. World Bank Policy Research Working Paper 9256.

DIALLO, M., RAO, J., (2018). Small area estimation of complex parameters under unitlevel models with skew-normal errors. Scandinavian Journal of Statistics, 45, pp. 1092−1116.

ELBERS, C., LANJOUW, J. O., LANJOUW, P., (2003). Micro-level estimation of poverty and inequality. Econometrica, 71, pp. 355−364.

FERRETTI, C., MOLINA, I., (2012). Fast EB Method for Estimating Complex Poverty Indicators in Large Populations. Journal of the Indian Society of Agricultural Statistics, 66, pp. 105−120.

GONZÁLEZ -MANTEIGA, W., LOMBARDÍA,M.J.,MOLINA,I.,MORALES,D.,SANTAMARÍA,L., (2008). Bootstrap mean squared error of a small-area eblup. Journal of Statistical Computation and Simulation, 78, pp. 443−462.

GRAF, M., MARÍN, J. M., MOLINA, I., (2019). A generalized mixed model for skewed distributions applied to small area estimation. TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 28, pp. 565−597.

GUADARRAMA, M., MOLINA, I., RAO, J. N. K., (2018). Small area estimation of general parameters under complex sampling designs. Computational Statistics and Data Analysis, 121, pp. 20−40.

HUANG, R., HIDIROGLOU, M., (2003). Design consistent estimators for a mixed linear model on survey data. Proceedings of the Survey Research Methods Section, American Statistical Association (2003), pp. 1897−1904.

MARHUENDA, Y., MOLINA, I., MORALES, D., RAO, J. N. K., (2017). Poverty mapping in small areas under a twofold nested error regression model. Journal of the Royal Statistical Society: Series A, 180, pp. 1111−1136.

MOLINA, I., (2019). Desagregación de datos enencuestas de hogares: metodologías de estimación en áreas pequeñas. Seriesdela Comisión Económicapara América Latinayel Caribe (CEPAL), Estudios Estadísticos LC/TS.2018/82/Rev.1, CEPAL.

MOLINA, I., MARHUENDA, Y., (2015). sae: An R package for small area estimation. The R Journal, 7, pp. 81−98.

MOLINA, I., NANDRAM, B., RAO, J. N. K., (2014). Small area estimation of general parameters with application to poverty indicators: A hierarchical Bayes approach. The Annals of Applied Statistics, 8, pp. 852−885.

MOLINA, I., RAO, J. N. K., (2010). Small Area Estimation of Poverty Indicators. The Canadian Journal of Statistics, 38, pp. 369−385.

STUKEL, D., RAO, J. N. K., (1999). On small-area estimation under two-fold nested error regression models. Journal of Statistical Planning and Inference, 78, pp. 131−147.

VAN DER WEIDE, R., (2014). Gls estimation and empirical Bayes prediction for linear mixed models with heteroskedasticity and sampling weights: a background study for the POVMAP project. World Bank Policy Research Working Paper 7028.

YOU, Y., RAO, J. N. K., (2002). A pseudo-empirical best linear unbiased prediction approach to small area estimation using survey weights. The Canadian Journal of Statistics, 30, pp. 431−439.

EXTRA FILES

COMMENTS