Silesian University of Technology
Subject: Economics, Transportation, Transportation Science & Technology
eISSN: 2300-861X
SEARCH WITHIN CONTENT
Lenka KUCHARIKOVÁ * / Eva TILLOVÁ / Otakar BOKŮVKA
Keywords : recycling of aluminium alloys, secondary aluminium alloys, aluminium in transportation industry
Citation Information : Transport Problems. Volume 11, Issue 2, Pages 117-122, DOI: https://doi.org/10.20858/tp.2016.11.2.11
License : (CC BY-SA 4.0)
Received Date : 21-March-2015 / Accepted: 12-May-2016 / Published Online: 02-February-2017
Summary. Nowadays, a transportation industry creates a lot of metal scrap because production and use of cars are on the increase worldwide. This is based on the fact that increase in the production of cars increases usage of aluminium alloys in transportation
applications. Therefore, it is necessary to reduce the production of components from primary aluminium alloy and increase their replacement with secondary—recycled—aluminium alloys because the production of recycled aluminium alloys is less expensive
and less energy-intensive than the creation of new aluminium alloy through the electrolysis. In addition, the recycled aluminium alloys have comparable microstructural parameters and properties as the same primary aluminium alloys.
Hydro. Oslo Norway. 2012. Available at: http://www.hydro.com/upload/Aluminium/Download/Aluminium_environment-and-society.pdf
Automotive Recycling Industry Environmentally Friendly, Market Driven, and Sustainable. Available at: http://www.autoalliance.org/download.cfm?downloadfile=B168D840-A2CA-11E5-997E000C296BA163&typename=dmFile&fieldname=filename
Fysikopoulos, Α. & Anagnostakis, D. & Salonitis, K. & Chryssolouris, G. An Empirical Study of the Energy Consumption in Automotive Assembly. Procedia CIRP. 2012. Vol. 3. P. 477 – 482.
Škoda auto jde příkladem v oblasti energetického managementu [In Czech: Skoda Auto has set an example in energy management] 2010. Available at: http://www.ihk-eforen.de/download/attachments/273154065/plus_0310_33_aus_interview_poddany_
skoda_cz.pdf?version=1&modificationDate=1375448937000&api=v2
Morris, M. & Barnes, J. & Morris, J. Energy efficient production in the automotive and clothing/textiles industries in South Africa. Development policy, statistics and research branch working paper. Viena, 2011. Available at:
http://www.unido.org//fileadmin/user_media/Publications/Research_and_statistics/Branch_publication
s/Research_and_Policy/Files/Working_Papers/2011/WP042011%20Energy%20Efficient%20Producti
on%20in%20the%20Automotive%20and%20ClothingTextiles%20Industries%20in%20South%20Afri ca.pdf
Dulebová, Ľ. & Varga, J. Recyklačné technológie v automobilovom priemysle. [In Slovak: Recycling technologies in the automotive industry]. Technical university of Košice. 2011. Available at: http://www.engineering.sk/clanky2/automobilovy-priemysel/301-recyklacnetechnologievap
Wieman, B. & Media, D. What Are the Benefits of Recycling Aluminium? Available at: http://homeguides.sfgate.com/benefits-recycling-aluminium-79200.html
Das, S.K. & Kaufman, J.G. Recycling aluminium aerospace alloys. Light Metals 2007. The Minerals. Metals & Materials Society. 2007. P. 1161-1165.
Das S. K. Designing Aluminum Alloys for a Recycling Friendly World. Materials Science Forum. 2006. Vol. 519-521. P. 1239-1244.
Gutowski, T.G. & Murphy, C.T. & Allen, D.T. & et al. Enviromentaly benign manufacturing. International Technology Research Institute World Technology (WTEC) Division. 2001. Available at:
http://web.mit.edu/ebm/www/Publications/WTEC%20Report%20on%20EBM.pdf
Recycling Aluminum Alloys. 2009. Available at: http://www.totalmateria.com/page.aspx?ID=CheckArticle&site=ktn&NM=222
Eperješi, Š. & Matvija, M. & Eperješi, Ľ. & Vojtko, M. Evaluation of cracking causes of AlSi5Cu3 alloy castings. Archives of Metallurgy and Materials. 2014. Vol. 59. No. 3. P. 1089-1092.
Hurtalová, L. & Tillová, E. & et al. The structure analysis of secondary (Recycled) AlSi9Cu3 cast alloy with and without heat treatment. Engineering Transactions. 2013. Vol. 61. No. 3. P. 197-218.
EN 1706: 2010. Aluminium and aluminium alloys. Castings. Chemical composition and mechanical properties.
Srivatsan, T.S. & Guruprasad, G. & Vesudevan, V.K. The quasi static deformation and fracture behavior of aluminum alloy 7150. Materials and Design. 2008. Vol. 29. P. 742-751.
Michna, S. & et al. Aluminium materials and technologies from A to Z. Adin, s.r.o. Prešov 2007.
Hurtalová, L. & Tillová, E. & Chalupová M. Microstructural and Vickers microhardness evolution of heat treated secondary aluminium cast alloy. Key Engineering Materials. 2014. Vol. 586. P. 137-140.
EN ISO 6892-1: 2009. Metallic materials – Tensile testing. Part 1: Method of test at room temperature
EN ISO 6506-1: 2014. Metallic materials – Brinell hardness test- Part 1: Test method
Guthy, H.V. Evolution of the Eutectic Microstructure in Chemically Modified and Unmodified Aluminum Silicon Alloys. Worchester Polytechnic Institute. 2002. Available at: https://www.wpi.edu/Pubs/ETD/Available/etd-0404102-182335/unrestricted/guthy.pdf
Zamani, M. Al-Si Cast Alloys - Microstructure and Mechanical Properties at Ambient and Elevated Temperature. School of Engineering Jönköping University. Licentiate thesis Dissertation Series No. 7. 2015. Available at: http://hj.diva-portal.org/smash/get/diva2:814885/FULLTEXT01.pdf