Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics , Transportation , Transportation Science & Technology


ISSN: 1896-0596
eISSN: 2300-861X





Volume / Issue / page

Related articles

VOLUME 11 , ISSUE 2 (June 2016) > List of articles


Teresa PAMUŁA *

Keywords : neural networks, transportation, prediction of road traffic parameters

Citation Information : Transport Problems. Volume 11, Issue 2, Pages 27-36, DOI:

License : (CC BY-SA 4.0)

Received Date : 02-December-2015 / Accepted: 08-May-2016 / Published Online: 02-February-2017



Summary. Neural networks’ (NNs) capability of mapping the nonlinear functions of variables describing the behaviour of objects and the simplicity of designing their configuration favours their applications in transport. This paper presents representative examples in the scope of prediction of road traffic parameters, road traffic control, measurement of road traffic parameters, driver behaviour and autonomous vehicles, and transport policy and economics. The features of the solutions are examined. The review shows that feedforward multilayer neural networks are the most often utilised configurations in transportation research. No systematic approach is reported on the optimisation of the NN configurations to achieve a set level of performance in solving modelling tasks.

Content not available PDF Share



Dougherty, M. A review of neural networks applied to transport. Transportation Research Part C. 1995. Vol. 3. P. 247–260.

Karlaftis, M.G. & Vlahogianni, E.I. Statistical methods versus neural networks in transportation research: Differences, similarities and some insights. Transportation Research Part C. 2011. Vol. 19. P. 387–399.

Duch, W. & Korbicz, J. & Rutkowski, L. & Tadeusiewicz, R. Sieci neuronowe. Seria Biocybernetyka i inżynieria medyczna PAN. Akademicka Oficyna Wydawnicza EXIT. Warszawa, 2000. [In Polish: Neural Networks. Academic Publishing House EXIT, 2000].

Kehagias, D. & Salamanis, A. & Tzovaras, D. Speed Pattern Recognition Technique for Short–Term Traffic Forecasting based on Traffic Dynamics. IET Intelligent Transport Systems. 2015. Vol. 9. No. 6. P. 646-653

Van Hinsbergen, C.P.I.J. & Hegyi, A. & van Lint, J.W.C. & van Zuylen, H.J. Bayesian neural networks for the prediction of stochastic travel times in urban networks. IET Intelligent Transport Systems. 2011. Vol. 5. No. 4. P. 259-265.

Qing, Ye. & Szeto, W.Y. & Wong, S.C. Short-term traffic speed forecasting based on data recorded at irregular intervals. IEEE Transactions on Intelligent Transportation Systems. 2012. Vol. 13. No. 4. P. 1727-1737.

Kranti Kumar, & Parida, M. & Katiyar, V.K. Short term traffic flow prediction for a non urban highway using artificial neural network, Procedia - Social and Behavioral Sciences. 2013. Vol. 104. P. 755-764.

Pamuła, T. Classification and prediction of traffic flow based on real data using neural networks. Archives of Transport. 2012. Vol. 4. P. 519-529.

Kit Yan Chan & Dillon, Tharam S. & Singh, J. & Chang, E. Neural-Network-Based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg–Marquardt algorithm. IEEE Transactions on Intelligent Transportation Systems. 2012. Vol. 13. No. 2. P. 644-654.

Dongbin Zhao & Yujie Dai & Zhen Zhang. Computational intelligence in urban traffic signal control: A Survey. IEEE Transactions on Systems. Man, and Cybernetics. Part C: Applications and Reviews. 2012. Vol. 42. No. 4. P. 485-494.

Box, S. & Waterson, B. An automated signalized junction controller that learns strategies from a human expert. Engineering Applications of Artificial Intelligence. 2012. Vol. 25. No. 1. 2012. P. 107-118.

Lorenzo, M. & Matteo, M. OD matrices network estimation from link counts by neural networks. Journal of Transportation Systems Engineering and Information Technology. 2013. Vol. 13. No. 4. P. 84-92.

Jungme Park, Y.L. & Murphey, R. & McGee, J.G. & Kristinsson, M.L. & Kuang, A.M. Phillips. Intelligent trip modeling for the prediction of an origin–destination traveling speed profile. IEEE Transactions on Intelligent Transportation Systems. 2014. Vol. 15. No. 3. P. 1039-1053.

Naranjo, J.E. & Jiménez, F. & Serradilla, F.J. & Zato, J.G. Floating car data augmentation based on infrastructure sensors and neural networks. IEEE Transactions on Intelligent Transportation Systems. 2012. Vol. 13. No. 1. P. 107-114.

Deka, L. & Quddus, M. Network-level accident-mapping: Distance based pattern matching using artificial neural network. Accident Analysis & Prevention. 2014. Vol. 65. P. 105-113.

Durduran, S. S. A decision making system to automatic recognize of traffic accidents on the basis of a GIS platform. Expert Systems with Applications. 2010. Vol. 37. No. 12. P. 7729-7736.

Ceylan, H. & Bayrak, M. B. & Gopalakrishnan, K. Neural networks applications in pavement engineering: A recent survey. International Journal of Pavement Research and Technology. 2014. Vol. 7. No. 6. P. 434-444.

Garcia, T. R. & Cancelas, N. G. & Soler-Flores, F. The artificial neural networks to obtain port planning parameters. Procedia - Social and Behavioral Sciences. 2014. Vol. 162. P. 168-177.

Li, M. & Chen, W. Application of BP neural network algorithm in sustainable development of highway construction projects. Physics Procedia. 2012. Vol. 25. P. 1212-1217.

Yingjun, Y. & Cui, H. & Shaoyang, Z. A prediction model of the number of taxicabs based on wavelet neural network. Procedia Environmental Sciences. 2012. Vol. 12. P. 1010-1016.

Gonzalez, P.A. & Weinstein, J.S. & Barbeau, S.J. & Labrador, M.A. & Winters, P.L. & Georggi, N.L. & Perez, R. Automating mode detection for travel behaviour analysis by using global positioning systems enabled mobile phones and neural networks. IET Intelligent Transport Systems. 2010. Vol. 4. No. 1. P. 37-49.

Zhao, Y. & Triantis, K. & Teodorovic, D. & Edara, P. A travel demand management strategy: The downtown space reservation system. European Journal of Operational Research. 2010. Vol. 205. No. 3. P. 584-594.

Singh, R. R. & Conjeti, S. & Banerjee, R. A comparative evaluation of neural network classifiers for stress level analysis of automotive drivers using physiological signals. Biomedical Signal Processing and Control. 2013. Vol. 8. No. 6. P. 740-754.

Patel. M. & Lal, S.K.L. & Kavanagh, D. & Rossiter, P. Applying neural network analysis on heart rate variability data to assess driver fatigue. Expert Systems with Applications. 2011. Vol. 38. No. 6. P. 7235-7242.

Qichang, He & Wei, Li & Xiumin, Fan & Zhimin, Fei. Driver fatigue evaluation model with integration of multi-indicators based on dynamic Bayesian network. IET Intelligent Transport Systems. 2015. Vol. 9. No. 5. P. 547-554.

Larue, G.S. & Rakotonirainy, A. & Pettitt, A.N. Predicting reduced driver alertness on monotonous highways. IEEE Pervasive Computing. 2015. Vol. 14. No. 2. P. 78-85.

Wollmer, M. & Blaschke, C. & Schindl, T. & Schuller, B. & Farber, B. & Mayer, S. & Trefflich, B. Online driver distraction detection using longshort-term memory. IEEE Transactions on Intelligent Transportation Systems. 2011. Vol. 12. No. 2. P. 574-582.

Chong, L. & Abbas, M. M. & Flintsch, A. M. & Higgs, B. A rule-based neural network approach to model driver naturalistic behavior in traffic. Transportation Research Part C: Emerging Technologies. 2013. Vol. 32. P. 207-223.

Xu, L. & Hu, J. & Jiang, H. & Meng, W. Establishing style-oriented driver models by imitating human driving behaviors. IEEE Transactions on Intelligent Transportation Systems. 2015. Vol. 16. No 5. P. 2522-2530.

Souza, J. R. & Pessin, G. & Shinzato, P. Y. & Osorio, F. S. & Wolf, D. F. Vision-based waypoint following using templates and artificial neural networks. Neurocomputing. 2013. Vol. 107. No. 1. P. 77-86.

Borenovic, M. & Neskovic, A. & Neskovic, N. Vehicle positioning using GSM and cascadeconnected ANN structures. IEEE Transactions on Intelligent Transportation Systemsl. 2013. Vol. 14. No. 1. P. 34-46.

Chi-Feng, Wu & Cheng-Jian, Lin & Chi-Yung, Lee. Applying a functional neurofuzzy network to real-time lane detection and front-vehicle distance measurement. IEEE Transactions on Systems Man and Cybernetics. Part C. 2012. Vol. 42. No. 4. P. 577-589.

Lin Cai & Rad, A.B. & Wai-Lok Chan. An intelligent longitudinal controller for application in semiautonomous vehicles. IEEE Transactions on Industrial Electronics. 2010. Vol. 57. No. 4. P. 1487-1497.

Zhang, J. & Zhao, X. & He, X. A Minimum resource neural network framework for solving multiconstraint shortest path problems. IEEE Transactions on Neural Networks and Learning Systems. 2014. Vol. 25. No. 8. P. 1566-1582.

Nazemi, A. & Omidi, F. An efficient dynamic model for solving the shortest path problem. Transportation Research Part C: Emerging Technologies. 2013. Vol. 26. 2013. P. 1-19.