INFLUENCE OF IMPLEMENTATION OF TECHNOLOGICALLY ADVANCED EVACUATION MODELS ON THE PROCESS OF DECREASING THE RISK DURING ACCIDENTS IN AN LNG TERMINAL

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics , Transportation , Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

9
Reader(s)
9
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 12 , ISSUE 1 (March 2017) > List of articles

INFLUENCE OF IMPLEMENTATION OF TECHNOLOGICALLY ADVANCED EVACUATION MODELS ON THE PROCESS OF DECREASING THE RISK DURING ACCIDENTS IN AN LNG TERMINAL

Goran STANKOVIĆ * / Stojan PETELIN / Peter VIDMAR / Marko PERKOVIČ

Keywords : LNG, evacuation model, risk analysis

Citation Information : Transport Problems. Volume 12, Issue 1, Pages 25-38, DOI: https://doi.org/10.20858/tp.2017.12.1.3

License : (CC BY 4.0)

Received Date : 25-October-2015 / Accepted: 13-February-2017 / Published Online: 30-March-2017

ARTICLE

ABSTRACT

Summary. The continuing growth of the LNG (liquid natural gas) industry has led to a rapid increase in the construction of LNG terminals and the need for accurate risk assessment models as accidents involving LNG are potentially hazardous and pose a major threat. One aspect of risk modeling - evacuation of people to the safe zones of an LNG terminal - is a complex problem that has yet to receive sufficient attention. The aim of this paper is to illustrate how the implementation of a technologically advanced evacuation model may decrease risk during potential accidents in an LNG terminal.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

  1. Sovacool, B.K. & Kryman, M. & Laine, E. Profiling technological failure and disaster in the energy sector: A comparative analysis of historical energy accidents. Energy. 2015. Vol. 90(2). P. 2016-2027.
    [CROSSREF]
  2. National Fire Protection Association (NFPA 59A). Standard for the Production, Storage, and Handling of Liquefied Natural Gas (LNG). 2006 Edition.
    [CROSSREF]
  3. National Fire Protection Association (NFPA). The Fire Protection Handbook. Nineteenth Edition. Vol. I & II. 2003.
    [CROSSREF]
  4. EN 1473, Installation and equipment for liquefied natural gas – Design of onshore installations. 2007.
    [CROSSREF]
  5. Principal Emergency Response and Preparedness Requirements and Guidance, OSHA - Occupational Safety and Health Administration, U.S. Department of Labor. OSHA 3122-06R. 2004.
    [CROSSREF]
  6. Vanem, E. & Pedro, A. & Ostvik, I.& Del Castillo de Comas, F. Analysing the risk of LNG carrier operations. Reliability Engineering & System Safety. 2008. Vol. 93. No. 9. P. 1328-1344.
    [CROSSREF]
  7. Tanabe, M. & Miyake, A. Risk reduction concept to provide design criteria for Emergency Systems for onshore LNG plants. Journal of Loss Prevention in the Process Industries. 2011. Vol. 24. P. 383-390.
    [CROSSREF]
  8. Sorensen, J. H. Hazard warning systems: review of 20 years of progress. Natural Hazards Review. May 2000. Vol. 1. No. 2. P. 119-125.
    [CROSSREF]
  9. Bernatik, A. & Senovsky, P. & Pitt, M. LNG as a potential alternative fuel - Safety and security of storage facilities. Journal of Loss Prevention in the Process Industries. 2011. Vol. 24(1). P. 19-24.
    [CROSSREF]
  10. Guidelines for developing quantitative safety risk criteria. Centre for Chemical Process Safety, 2009. ISBN 978-0-470-26140-8.
    [CROSSREF]
  11. Liu, M. & Lo, S. &Yuen, K. A Study on Emergency Evacuation Planning in Case of Disasters. Proceedings of 2008 (tenth) Annual Meeting China Association for Science. Zhengzhou, China, 17–19 September 2008. CAST: China 2009.
  12. Guidelines for Chemical Process Quantitative Risk Analysis. Second edition. Centre for Chemical Process Safety of the American Institute of Chemical Engineers. 2000.
    [CROSSREF]
  13. Stanković, G. & Petelin, S. & Kožuh, M.R. & Vidmar, P. & Perkovič, M. Evacuation model managed through fuzzy logic during an accident in a LNG terminal. Maritime University of Szczecin–Scientific Journal. Zeszyty Naukowe. Akademia Morska w Szczecinie. 2013. Vol. 36(108). Z. 1. P. 131–137. ISSN 1733-8670.
  14. Teodorović, D. & Vukadinović, K. Traffic Control and Transport Planning: A Fuzzy Sets and Neural Networks Approach. Kluwer Academic Publishers. Boston–Dordrecht–London. 1998.
    [CROSSREF]
  15. Sanya Namee, Boonsap Witchayangkoon, Ampol Karoonsoontawong. Fuzzy Logic Modelling Approach for Risk Area Assessment for Hazardous Materials Transportation. American Transactions on Engineering & Applied Sciences. 28 January 2012.
    [CROSSREF]
  16. Mendel, J.M. Fuzzy Sets for Words: A New Beginning. The IEEE International Conference on Fuzzy Systems. 2003.
    [CROSSREF]
  17. Mouilleau, Y. & Champassith, A. CFD simulations of the atmospheric gas dispersion using the Fire Dynamics Simulator(FDS). Journal of Loss Prevention in the Process Industries2009. Vol. 22. P. 316-323.
    [CROSSREF]
  18. Gavelli, F. & Bullister, E. & Kytomaa, H. Application of CFD(Fluent) to LNG spills into geometrically, complex environments. Journal of Hazardous Materials. 2008. Vol. 159. P. 158–168.
    [CROSSREF]
  19. Oka, H. & Ota, S. Evaluation of consequence assessment methods for pool fires on water involving large spills from liquefied natural gas carriers. J Mar Sci Technol. 2008. Vol. 13. P. 178-188.
    [CROSSREF]
  20. Jonson, D.W. & Cornwell, J.B. Modeling the release, spreading, and burning of LNG, LPG, and gasoline on water. Journal of Hazardous Materials. Vol. 140. 2007. P. 535-540.
    [CROSSREF]
  21. Hissong, D.W. Keys to modeling LNG spills on water. Journal of Hazardous Materials. 2007. Vol. 140. P. 465-477.
    [CROSSREF]
  22. Whitlox, H.W.M. & Holt, A. A Unified Model for Jet, Heavy, and Passive. Pitblado, R.M. & Baik, J. & Hughes, G.J. & Ferro, C. & Shaw, S.J. Consequences of LNG marine incidents. DET NORSKE VERITAS (USA) INC. Houston. 2004.
    [CROSSREF]
  23. Oliveira, L.F. & Tavares, P. & Felcini, C. & Fabio Lo Brutto. Critical risk factors for LNG regasification terminals. Reliability and Risk Analysis: Beyond the Horizon – Steenbergen et al. (Eds.). 2014. Taylor & Francis Group. London. ISBN 978-1-138-00123-7.
    [CROSSREF]
  24. Guidelines for Chemical Process Quantitative Risk Analysis, Second edition, Centre for chemical process safety of the American Institute of chemical engineers. 2000.
    [CROSSREF]
  25. Hightower, M. & Gritzo, L. & Luketa-Hanlin, A. & Covan, J. & Tieszen, S. & Wellman, G. & Irwin, M. & Kaneshige, M. & Melof, B. & Morrow, C.& Ragland, D. Guidance on Risk Analysis and Safety Implications of a Large Liquefied Natural Gas (LNG) Spill Over Water. SANDIA REPORT, SAND2004-6258. Unlimited Release. Printed December, 2004.
    [CROSSREF]
  26. Luketa, A. & Hightower, M. M. & Attaway, S. Breach and Safety Analysis of Spills Over Water from Large Liquefied Natural Gas Carriers. SANDIA REPORT, SAND2008-3153. Unlimited Release. Printed May, 2008.
    [CROSSREF]

EXTRA FILES

COMMENTS