ELECTROCHEMICAL CYCLE FOR THE CONVERSION OF THE WASTE HEAT INTO ELECTRICAL ENERGY: THE POSSIBILITY OF USING IN WATER TRANSPORT

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics , Transportation , Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

12
Reader(s)
12
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 13 , ISSUE 3 (September 2018) > List of articles

ELECTROCHEMICAL CYCLE FOR THE CONVERSION OF THE WASTE HEAT INTO ELECTRICAL ENERGY: THE POSSIBILITY OF USING IN WATER TRANSPORT

Sergei VASSEL / Natalia VASSEL

Keywords : waste energy, efficiency, exhaust gase

Citation Information : Transport Problems. Volume 13, Issue 3, Pages 79-84, DOI: https://doi.org/10.20858/tp.2018.13.3.7

License : (BY-NC-ND 4.0)

Received Date : 05-May-2016 / Accepted: 04-September-2018 / Published Online: 03-October-2018

ARTICLE

ABSTRACT

We developed a concept and calculated an efficiency of the electrochemical cycle of converting low-grade heat (temperature difference 10-80°C) into electricity. The cycle could be divided into two stages: creating a concentration difference by a solution distilled in a temperature gradient and electricity generation in concentration galvanic cell. The calculation shows that the efficiency of converting heat into electricity could reach 40-55% of Carnot efficiency in a temperature range of 0-100°C in the case of use of a multi-cascade distiller. The calculations show that ratio power/mass of the device is too low to be used in automobile or air transport, but it could be used in water transport.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Quickenden, T. & Mua, Y. A review of power generation in aqueous thermogalvanic cells.  J. Electrochem. Soc. 1995. No. 11. P. 3985-3994.

2. Mua, Y. & Quickenden, T. Power conversion efficiency, electrode separation, and overpotential in the ferricyanide/ferrocyanide thermogalvanic cell. J. Electrochem. Soc. 1996. No. 8. P. 2558-2564.

3.  Kang, T. & et al. Electrical power from nanotube and graphene electrochemical thermal energy harvesters. Advanced Functional Materials. 2012. No. 3. P. 477-489.

4. Gunavan, A. & et al. Liquid thermoelectrics: review of recent and limited new data of thermogalvanic cell experiments. Nanoscale Microscale Thermophys. Eng. 2013. Vol. 17. No. 4. P. 304-322.

5. Gunavan, A. & et al. The amplifying effect of natural convection on power generation of thermogalvanic cells. International Journal of Heat and Mass Transfer. 2014. Vol. 78. P. 423-434.

6. Hu, R. & et al. Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based ThermoElectrochemical Cell. Nano Lett. 2010. Vol. 10. No. 3. P. 838-846.

7. Kang, T.J. & et al. Electrical Power from Nanotube and Graphene Electrochemical Thermal. Energy Harvesters. Adv. Funct. Mater. 2012. Vol. 22. P. 477-489.

8. Black, J.J. & et al. The thermoelectrochemistry of lithium-glyme solvate ionic liquids: towards waste heat harvesting. Phys. Chem. Chem. Phys. 2016. Vol. 18. P. 20768-20777.

9. Bonetti, M. & et al. Huge Seebeck coefficients in nonaqueous electrolytes, J. Chem. Phys. 2011. Vol. 134. P. 114513-1 - 114513-8.

10. Zhou, H. & et al. Supramolecular Thermo-Electrochemical Cells: Enhanced Thermoelectric Performance by Host–Guest Complexation and Salt-Induced Crystallization. J. Am. Chem. Soc. 2016. Vol. 138. No. 33. P. 10502-10507.

11. Rahimi, M. & et al. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery. Journal of Power Sources. 2017. Vol. 351. P. 45-50.

12. Vassel, S. &Vassel, N. Electrochemical way of converting low-grade heat energy into electricity based on crystalline hydrate melting and crystallization. International Journal of Heat and Mass Transfer. 2018. Vol. 122. P. 818-822.

13. Yuan Yang & et al. Membrane-Free Battery for Harvesting Low-Grade Thermal Energy. Nano Lett. 2014. Vol. 14. No. 11. P. 6578-6583.

14. Vassel, S. Electrochemical way of converting geothermal and low-potential heat energy into electricity. JP Journal of Heat and Mass Transfer. 2015. Vol. 11. No. 2. P. 169-176.

15. Carati, A. & Marino, M. & Brogioli, D. Thermodynamic study of a distiller-electrochemical cell system for energy production from low temperature heat sources. Energy. 2015. Vol. 93. P. 984993.

16. Vassel, S. & Vassel, N. A hybrid of thermogalvanic and concentration galvanic cells as an effective device for converting low-potential heat energy into electricity. International Journal of Heat and Mass Transfer. 2017. Vol. 108. P. 2333-2337.

17. Рабинович, В.А. & Хавин, З.В. Краткий химический справочник. Ленинград: Химия, 1978, [In Russian: Rabinovich, V. & Havin, Z. A brief chemical handbook. Leningrad: Chemistry].

18. Равдель, А.А. & Пономарева, А.М. Краткий справочник физико-химических величин. СанктПетербург: Иван Федоров. 2003. 240 стр. [In Russian: Ravdel, A. & Ponomareva, A. Brief reference of physico-chemical variables. Sankt-Peterburg. Ivan Fedorov].

19. Волков, A.И. & Жарский, И.M. Большой химический справочник. Минск: Современная школа. 2005. 605 с. [In Russian: Volkov, A. & Zharskiy, I. Big chemical reference book, Minsk: Modern school].  

20. Вайнел, Д.В. Аккумуляторные батареи. Москва: Госэнергоиздат. 1960. 480 с. [In Russian: Vainel, D.V. Rechargeable batteries. Moscow: Gosenergoizdat].

21. Knock Nevis. Avaluable at: https://ru.wikipedia.org/wiki/Knock_Nevis 

EXTRA FILES

COMMENTS