HYDRO PNEUMATIC MECHANICAL ENERGY ABSORBER ENHANCING PASSIVE SAFETY OF A MOTOR VEHICLE

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics , Transportation , Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

41
Reader(s)
73
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 14 , ISSUE 2 (June 2019) > List of articles

HYDRO PNEUMATIC MECHANICAL ENERGY ABSORBER ENHANCING PASSIVE SAFETY OF A MOTOR VEHICLE

Marijonas BOGDEVIČIUS * / Rolandas VITKŪNAS

Keywords : vehicle safety; hydro mechanical energy absorber; absorption of kinetic energy; mathematical model; dynamics process

Citation Information : Transport Problems. Volume 14, Issue 2, Pages 5-17, DOI: https://doi.org/10.20858/tp.2019.14.2.1

License : (CC BY 4.0)

Received Date : 13-February-2018 / Accepted: 31-May-2019 / Published Online: 14-July-2019

ARTICLE

ABSTRACT

The purpose of this paper is to describe and analyse a mechanical device designed to enhance the safety of a motor vehicle. The topic is addressed by analysing the method of absorbing kinetic energy during a car collision with an obstacle. The article analyses opportunities to convert motor vehicle’s kinetic energy into another type of energy in the case of collision. For this purpose, various mechanical, hydraulic or pneumatic devices are normally used. Such devices are designed to absorb collision energy and reduce or eliminate its impact on the driver, the passengers or cargo in the motor vehicle. The absorber may be used as an additional element of safety to the passenger and the cargo. The energy absorber described in the present article incorporates hydraulic, pneumatic and mechanical components. The description of the absorber presented here is based on mathematical calculations characterizing mechanical, pneumatic and hydraulic processes in the equipment. The analysis of the developed mechanism employs a special application to calculate major parameters of the motor vehicle and the installed absorber. The article also gives a sensitivity analysis of the effect of the rod length on the decrement of the vehicle's kinetic energy.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Gumuła, S. & Doruch, H. Układy do hamowania i zabezpieczania pojazdów przed skutkami zderzeń poprzez przekazanie energii akumulatorom mechanicznym. Proceedings of the VI Sympozjum Naukowo-Techniczne - SILWOJ' 2003. 2003. P. 209-214. [In Polish: Systems for braking and protecting vehicles against the effects of collisions by transferring energy to mechanical batteries].

2. Gumuła, S. & Łągiewka, L. A method of impact and inertia force reduction during collisions between physical objects. Results of experimental investigations. Journal of Technical Physics. 2007. No. 48(1). P. 13-27. 

3. Gumuła, S. & Łągiewka, L. Conceptual design of vehicles' protection against the impacts of collisions using the energy transfer method. Journal of KONES Powertrain and Transport. 2006. No. 13(1). P. 269-277. 

4. Gumuła, S. & Łągiewka, L. Zmniejszanie siły zderzeń. Przegląd Techniczny. 2005. No. 2.  [In Polish: Reducing collision strength. Technical review].

5. US 2010/0122864 A1. Hybrid hydraulic drive system for all terrestrial vehicles, with the hydraulic accumulators as the vehicle chassis. Available at: http://www.google.com/patent/US2010012286.

6. WO 2013137516 A1. A Vehicle bumper where the shock absorber which uses permanent magnet and electromagnet is established. Available at: http://www.google.com/patents/WO2013137516A1?cn.

7. CN 201833977. Vehicle safety mechanism. Available at: http://www.google.com/patents/ CN201833977U?cl=zh.

8. CN 201989737. Special vehicle chassis gas circuit control device. Available at: http://www.google.com/patents/CN201989737U?cl=zh.

9. DE 10 2010 051 872 A1. Die folgenden Angaben sind den vom Anmelder eingereichten entnommen [online]. Available at: http://www.google.com/patents/ DE102011104016B4?cl=en.

10. Huang, X. & Xie, Y.M. & Lu, G. Topology optimization of energy- absorbing structures. International Journal of Crashworthiness. 2007. 12:6. P. 663-675. DOI:10.1080/13588260701497862.

11.  Simon, P. & Beggs, P.D. A numerical performance comparison of a dual-phase steel and aluminium alloy bumper bar system. International Journal of Crashworthiness. 2010. Vol. 15(4). P. 425-442. DOI: 10.1080/13588261003696441.

12. Cronk, P.M. & Van de Ven, J.D. A review of hydro-pneumatic and flywheel energy storage for hydraulic systems. International Journal of Fluid Power. 2018. Vol. 19(2). P. 69-79.  DOI: 10.1080/14399776.2017.1386061.

13. Caihong Huang & Jing Zeng. Dynamic behaviour of a high- speed train hydraulic yaw damper. Vehicle System Dynamics. 2018. Vol. 56(12). P. 1922-1944. DOI:10.1080/00423114.2018.1439588.

14. Van de Ven, J.D. Increasing Hydraulic Energy Storage Capacity: Flywheel-Accumulator. International Journal of Fluid Power. 2009. Vol. 10(3). P. 41-50. DOI:0.1080/14399776.2009.10780987.

15. Kokkula, S. & Langseth, M. & Hopperstad, O.S. & Lademo, O-G. Offset impact behaviour of bumper beam—longitudinal systems: experimental investigations. International Journal of Crashworthiness. 2006. Vol. 11(4). P. 299-316. DOI: 10.1533/ijcr.2005.012.

16. Sijing Guo, & Yilun Liu & Lin Xu & Xuexun Guo & Lei Zuo. Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles. Vehicle System Dynamics. 2016. Vol. 54(7). P. 918-942. DOI: 10.1080/00423114.2016.1174276.

17. Ruiming Zou, Shihui Luo & Weihua Ma. Simulation analysis on the coupler behaviour and its influence on the braking safety of locomotive. Vehicle System Dynamics. 2018. Vol. 56(11). P. 1747-1767. DOI: 10.1080/00423114.2018.1435893.

18. Griškevičius, P. & Žiliukas, A. The crash energy absorption of the vehicles front structures. Transport. 2003. Vol. 18(2). P. 97-101.

EXTRA FILES

COMMENTS