CONTROLLING OF TRAIN’S INTERIOR HEATING SYSTEM FOR MAXIMUM ENERGY EFFICIENCY

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics , Transportation , Transportation Science & Technology

GET ALERTS

ISSN: 1896-0596
eISSN: 2300-861X

DESCRIPTION

9
Reader(s)
25
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 14 , ISSUE 3 (September 2019) > List of articles

CONTROLLING OF TRAIN’S INTERIOR HEATING SYSTEM FOR MAXIMUM ENERGY EFFICIENCY

Dāvis BUŠS * / Jānis EIDUKS

Keywords : hybrid heating system; waste heat recovery; hot air heating

Citation Information : Transport Problems. Volume 14, Issue 3, Pages 121-134, DOI: https://doi.org/10.20858/tp.2019.14.3.11

License : (CC BY 4.0)

Received Date : 04-May-2018 / Accepted: 03-September-2019 / Published Online: 04-November-2019

ARTICLE

ABSTRACT

Heating systems in diesel multiple unit (DMU) trains often use additional mechanical and/or electrical auxiliary power, increasing fuel consumption, while waste heat is available from the diesel engine. Delivery of waste heat for heating of multiple carriages is analysed as realized in DR1 and D1 series trains, in light of the current standards of passenger comfort and in-depth testing of DR1B trains. A new hybrid hot air and electrical heating system and its control algorithm is reviewed for modernized DR1AC trains of Latvian railways, capable of extracting waste heat from three different sources and supplemented by two additional sources in case of shortage, for full conformance to EN 14750-1 standard. Results of factory testing are included.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Aliahmadipour, M. & Abdolzadeh, M. & Lari, K. Air flow simulation of HVAC system in compartment of a passenger coach. Applied Thermal Engineering. 2017. Vol. 123. P. 973-990.

2. Angel, B. & Sègretain, S. & Paradot, N. Optimising Ventilation Ducting in High Speed and Regional Trains. In: Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance. 2014. Stirlingshire, United Kingdom: Civil-Comp Press.

3. Balan, C. & Danca, P. & Bode, F. & Nastase, I. & Meslem, A. & Balan, M.C. CFD simulation of a cabin thermal environment with and without human body – thermal comfort evaluation. E3S Web of Conferences. 2018. Vol. 32. No. 01018. P. 1-8.

4. Berlitz, T. & Matschke, G. Interior air flow simulation in railway rolling stock. In: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2002. Vol. 216(4). P. 231-236.

5. Biloshytskyi, E.V. Mathematical Model of Unsteady Heat Transfer of Passenger Car with Heating System. Science and Transport Progress Bulletin of Dnipropetrovsk National University of Railway Transport. 2018. Vol. 1(73). P. 121-130.

6. Brunner, C.U. & Farner, M. & Gartner, R. & Huber, H. & Nipkow, J. Energiesparen bei Reisezugwagen. Messungen am erneuerten B 20-73. Bundesamtes für Energie. 2000 (Bericht 5) [In German: Energy saving in passenger coaches. Measurements of the refurbished B 20-73].

7. Charate, T. & Awate, N. & Padir, S. & Dubey, D. & Kadam, A. A Review of Absorption Refrigeration in Vehicles using Waste Exhaust Heat. International Journal of Scientific & Engineering Research. 2017. Vol. 8(3). P. 65-67.

8. Dīzeļvilciens DR1AC Ekspluatācijas rokasgrāmata. 580.00.00.000ER, II sējums. Pilnsabiedrība "DMU vilcieni", 2015. [In Latvian: DR1AC series DMU train. Users manual, volume II].

9. DR1AC tipa (sērijas) dīzeļvilciens. Testēšanas pārskats. Mikroklimata, ieplūstošā gaisa daudzuma pārbaude apkures režīmā Nr. PS-BTC.341-16, SIA "Baltijas Testēšanas centrs" Izmēģinājumu centrs 2016. P. 12. [In Latvian: DR1AC type (series) DMU train. Test report. Testing of microclimate, fresh air supply in heating mode].

10. Goelz, P. & Orellano, A. Simulation of transient thermal comfort in trains. In: 5th International Conference on Heat Transfer. Fluid Mechanics and Thermodynamics. 2007. Sun City, South Africa. Available at: https://pdfs.semanticscholar.org/ff20/c9257640eacfb533704ac101c5e928033bf1. pdf

11. Haller, G. & Kreitmayer, M. Energie-Verbrauchsanalyse und -Einsparpotenziale bei Klimaanlagen. Elektrische Bahnen Elektrotechnik im Verkehrswesen. 2007. Vol. (10). P. 2-8. [In German: Energy usage analysis and potentials savings for air conditioning].

12. Han, T. & Huang, L. A Sensitivity Study of Occupant Thermal Comfort in a Cabin Using Virtual Thermal Comfort Engineering. SAE International. 2005 (2005-01-1509).

13. Khomenko, I.Yu. Mathematical modeling of unsteady heat exchange in a passenger car. Наука та прогрес транспорту Вісник Дніпропетровського національного університету залізничного транспорту. 2013. Vol. 6(48). P. 147-155.

14. Kok, J.C. & Muijden, J.v. & Burgers, S.S. & Dol, H. & Spekreijse, S.P. Enhancement of aircraft cabin comfort studies by coupling of models for human thermoregulation, internal radiation, and turbulent flows. In: European Conference on Computational Fluid Dynamics. 2006. P. 1-19.

15. Kolesnykov, S.R. Improvement of Life Support Systems of Passenger Rolling Stock: Patent Review. Science and Transport Progress Bulletin of Dnipropetrovsk National University of Railway Transport. 2018. Vol. 1(73). P. 44-55.

16. Konstantinov, M. & Wagner, C. Numerical Simulation of the Thermal Comfort in a Train Cabin. International Journal of Railway Technology. 2015. Vol. 4(3). P. 69-88.

17. Kubota, T. & Watanabe, R. Model-based Optimization of a Multi-zone HVAC System for Cooling. IFAC Proceedings Volumes. 2013. Vol. 46(21). P. 207-212.

18. LVS EN 14750-1:2006 Dzelzceļa aprīkojums. Gaisa kondicionēšana pilsētas un piepilsētas ritošajos sastāvos. 1. daļa Komforta raskturlielumi. Standartizācijas nodaļa. Latvijas standarts. 20 p. [In Latvian: Railway applications - Air conditioning for urban and suburban rolling stock - Part 1: Comfort parameters. Standardisation division, Latvian standard].

19. LVS EN 14750-2:2006 Dzelzceļa aprīkojums. Gaisa kondicionēšana pilsētas un piepilsētas ritošajos sastāvos. 2.daļa: Tipveida testi. Standartizācijas nodaļa. Latvijas standarts. 22 p. [In Latvian: Railway applications - Air conditioning for urban and suburban rolling stock – Part 2: Type tests. Standardisation division, Latvian standard].

20. Suárez, C. & Iranzo, A. & Salva, J. & Tapia, E. & Barea, G. & Guerra, J. Parametric Investigation Using Computational Fluid Dynamics of the HVAC Air Distribution in a Railway Vehicle for Representative Weather and Operating Conditions. Energies. 2017. Vol. 10(8):1074. P. 1-13.

21. Sweeney, E. & Brunton, J. Modification of Luas heating and ventilation systems to reduce energy consumption. Irish Transport Research Network Conference. Dublin: Trinity College Dublin; 2013. Available at:  https://arrow.dit.ie/cgi/viewcontent.cgi?article=1064&context=engschmeccon

22. Wang, H. & Lin, M. & Chen, Y. Performance evaluation of air distribution systems in three different China railway high-speed train cabins using numerical simulation. Building Simulation. 2014. Vol. 7(6). P. 629-638.

23. Габринец В.А. Использование гидравлического тормоза в качестве источника тепловой энергии для подвижного состава железных дорог. Наука та прогрес транспорту Вісник Дніпропетровського національного університету залізничного транспорту. 2012. Vol. (42). P. 48-54. [In Russian: Gabrinets V.A. Hydraulic brake as a heat energy source for railway rolling stock].

24. Габринец, В.А. & Титаренко, И.В. Концепция оптимального по энергозатратам пассажирского вагона с использованием нетрадиционных источников энергии. Наука та прогрес транспорту Вісник Дніпропетровського національного університету залізничного транспорту. 2014. Vol. 4 (52). P. 111-117. [In Russian: Gabrinets, V.A. & Tytarenko, I.V. Concept of the minimum energy usage passenger car with use of unconventional energy sources].

25. Емельянов, А.Л. & Буравой, С.Е. & Платунов, Е.С. Обобщенная математическая модель нестационарного теплового режима пассажирского вагона с СКВ. Научный журнал НИУ ИТМО, серия: «Холодильная техника и кондиционирование». 2007. Vol. 1. [In Russian: Yemelyanov, A.L. & Buravoy, S.Y. & Platunov, Y.S. General mathematical model of transient heat regime of passenger car with HVAC]. Available at: https://openbooks.itmo.ru/read_refrigeration/7695/7695.pdf

26. Емельянов, А.Л. & Буравой, С.Е. & Платунов, Е.С. Тепловая инерционность воздуха в помещениях с системами кондиционирования. Kholodilnaya tekhnika i konditsionirovaniye – Refrigeration and Conditioning. 2007. Vol. 1. P. 27-33. [In Russian: Yemelyanov, A.L. & Buravoy, S. Y., & Platunov, Y.S. Thermal inertia of air in rooms with HVAC].

27. Емельянов, А.Л. & Козин, В.М. & Царь, В.В. Энергосберегающие системы кондиционирования и вентиляции пассажирских вагонов. Транспорт Российской Федерации. 2010. Vol. 4(29). P. 54-57. [In Russian: Yemelyanov, A L., Kozin, B.M. & Carj, V.V. Energy efficient air conditioning and ventilation systems of passenger cars].

28. Лернер, Б.М. & Ковалев, Н.П. & Лебедев, В.П. & Курятников, А.А. Дизель-поезда. Устройство, ремонт, эксплуатация. Москва: Транспорт, 1982. 279 с. [In Russian: Lerner, B.M. & Kovalev, N.P. & Lebedev, V.P. & Kuryatnikov, A.A. Diesel trains. Design, repair, operation].

EXTRA FILES

COMMENTS