CONTROL OF THE BEGINNING OF ACCIDENTS IN RAILROAD OPERATION SAFETY SYSTEMS IN SEISMICALLY ACTIVE REGIONS USING THE NOISE TECHNOLOGY

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics , Transportation , Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

6
Reader(s)
12
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 14 , ISSUE 3 (September 2019) > List of articles

CONTROL OF THE BEGINNING OF ACCIDENTS IN RAILROAD OPERATION SAFETY SYSTEMS IN SEISMICALLY ACTIVE REGIONS USING THE NOISE TECHNOLOGY

Telman ALIEV * / Tofig BABAYEV / Tahir ALIZADA / Narmin RZAYEVA

Keywords : signal; noise analysis; control; accident; correlation matrix; Signaling; railroad; seismically active regions

Citation Information : Transport Problems. Volume 14, Issue 3, Pages 155-162, DOI: https://doi.org/10.20858/tp.2019.14.3.14

License : (CC BY 4.0)

Received Date : 06-May-2018 / Accepted: 04-September-2019 / Published Online: 04-November-2019

ARTICLE

ABSTRACT

On the railroads in seismically active regions, the impact of frequent weak earthquakes accelerates the initiation of defects such as wear and tear, cracks and deformation due to fatigue. An analysis of the types and stages of initiation and development of defects preceding accidents at technical facilities has shown that the registration of the beginning of the latent period of transition of objects to an emergency state based on the results of traditional technologies of analysis of measurement information in the applied control systems in the field of railway transport is delayed owing to the difficulties of noise analysis. The proposed algorithms and noise analysis technologies allow forming corresponding sets of informative attributes to control the beginning of the latent period of accidents. Their use in intelligent noise control systems will improve the safety of this mode of transportation. To this end, it is expedient to create a subsystem for noise seismic hazard warning, i.e., a subsystem for noise control of the onset of the initiation and dynamics of development of changes in the technical condition of the rolling stock, railroad tracks, bridges, tunnels, and other railroad infrastructure facilities.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Aliyev, T. Noise Control of the Beginning and Development Dynamics of Accidents. Springer. 2019. 201 p. DOI: https://www.doi.org/10.1007/978-3-030-12512-7.

2. Melke, J. & Kramer, S. Diagnostic methods in the control of railway noise and vibration. Journal of Sound and Vibration. 1983. Vol. 87. No. 2. P. 377-386. DOI: https://www.doi.org/10.1016/0022-460X(83)90577-1.

3. Marquez, F.P.G. & Weston, P. & Roberts, C. Failure analysis and diagnostics for railway trackside equipment. Engineering Failure Analysis. 2007. Vol. 14. No. 8. P. 1411-1426. DOI: https://www.doi.org/10.1016/j.engfailanal.2007.03.005.

4. Lukasik, Z & Nowakowski, W. & Ciszewski, T & Freimane, J. A fault diagnostic methodology for railway automatics systems. Procedia Computer Science. 2019. Vol. 149. P. 159-166. DOI: https://www.doi.org/10.1016/j.procs.2019.01.119.

5. Гурский, Е.П. Оценка эксплуатационной надежности грузовых вагонов и выбор протяженности гарантийного участка. Вестник Гомельского государственного технического университета имени П.О. Сухого. 2009. No. 2. P. 21-26. [In Russian: Gursky, Y.P. Assessment of the operational reliability of freight cars and the choice of the length of the warranty area. Bulletin of Sukhoi State Technical University of Gomel]. Available at: https://elib.gstu.by/handle/220612/2272. 

6. Марюхненко, В.С. & Мухопад, Ю.Ф. & Миронов, Б.М. & Алексеенко, В.А. Автоматизированный контроль подвижного состава на ходу поезда. Иркутск: Иркутский государственный университете путей сообщения. 2016. 176 p. [In Russian: Mahjukhnenko, V.S. & Mjukhopad, J.F. & Myronov, B.M. & Aljeksejenko, V.A. Automated control of the rolling stock of the moving train. Irkutsk: Irkutsk State Transport University]. Available at: http://sdo2.irgups.ru/mod/resource/view.php?id=24776.

7. Зыков, Ю.В. & Сигилева, Е.И. Теоретические основы технической диагностики подвижного состава. Екатеринбург: Издательство Уральского государственного университета путей сообщения. 2015. 112 p. [In Russian: Zykov, Y.V. & Sigileva, E.I. Theoretical foundations of technical diagnostics of the rolling stock. Yekaterinburg: Publishing House of the Ural State University of Railway Transport].

8. Буйносов, А.П. & Стаценко, К.А. Комплексы технической диагностики электроподвижного состава. Екатеринбург: Издательство Уральского государственного университета путей сообщения. 2013. 119 p. [In Russian: Buynosov, A.P. & Statsenko, K.A. Complexes for technical diagnostics of electric motive power. Yekaterinburg: Publishing House of the Ural State University of Railway Transport].

9. Moghaddam, A. A review on the current methods of railway induced vibration attenuations. International Journal of Science and Engineering Applications. 2017. Vol. 6. No. 4. P. 123-128. DOI: https://www.doi.org/10.7753/IJSEA0604.1001.

10. Bezin, Y. Railway turnout damage prediction and design implications. In: International Conference on Train/Track Interaction & Wheel/Rail Interface. 20-22 June 2016. Hall of Railway Sciences (CARS), Beijing, China.

11. Aliev, T. Intelligent seismic-acoustic system for identifying the area of the focus of an expected earthquake. In: Zouaghi T (ed) Earthquakes: tectonics, hazard and risk mitigation. London: Intech. 2017. P. 293-315. DOI: https://www.doi.org/10.5772/65403.

12. Collacott, R.A. Mechanical fault diagnosis and condition monitoring. Dordrecht: Springer. 1977. DOI: https://www.doi.org/10.1007/978-94-009-5723-7.

13. Bendat, J.S. & Piersol, A.G. Random data: analysis and measurement procedures. 4th edn. Hoboken: Wiley. 2010. DOI: https://www.doi.org/10.1002/9781118032428.ch11.

14. Proakis, J.G. & Manolakis, D.G. Digital signal processing: principles, algorithms, and applications. 4th edn. Upper Saddle River: Pearson Prentice Hall. 2006.

15. Vetterli, M. & Kovacevic, J. & Goyal, V.K. Foundations of signal processing. 3rd edn. Cambridge: Cambridge University Press. 2014.

16. Owen, M. Practical signal processing. Cambridge: Cambridge University Press. 2012.

17. Kay, S.M. Fundamentals of statistical signal processing. Volume III: practical algorithm development. 1st edn. Prentice Hall. Westford. 2013.

18. Smith, S. Digital signal processing: a practical guide for engineers and scientists. 1st edn. Amsterdam: Newnes. 2002.

19. Manolakis, D.G. & Ingle, V.K. Applied digital signal processing: theory and practice. 1st edn. Cambridge: Cambridge University Press. 2011. DOI: https://www.doi.org/10.1017/cbo9780511835261.

20. Accutech AM20: Wireless acoustic monitor field unit. Available at: https://www.omnicon.it/public/pdf/Accu/SE-DataSheets-Accutech-AM20-A4-TBU-V013.pdf.

21. Aliev, T. & Alizada, T. & Rzayeva, N. Noise technologies and systems for monitoring the beginning of the latent period of accidents on fixed platforms. Mechanical Systems and Signal Processing. 2017. Vol. 87. P. 111-123. DOI: https://www.doi.org/10.1016/j.ymssp.2016.10.014.

EXTRA FILES

COMMENTS