PARALLEL COMPUTATIONS AND CO-SIMULATION IN UNIVERSAL MECHANISM SOFTWARE. PART I: ALGORITHMS AND IMPLEMENTATION

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics , Transportation , Transportation Science & Technology

GET ALERTS

ISSN: 1896-0596
eISSN: 2300-861X

DESCRIPTION

2
Reader(s)
2
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 14 , ISSUE 3 (September 2019) > List of articles

PARALLEL COMPUTATIONS AND CO-SIMULATION IN UNIVERSAL MECHANISM SOFTWARE. PART I: ALGORITHMS AND IMPLEMENTATION

Dmitry POGORELOV / Alexander RODIKOV / Roman KOVALEV *

Keywords : multibody dynamics; parallel computations; co-simulation; railway research

Citation Information : Transport Problems. Volume 14, Issue 3, Pages 163-175, DOI: https://doi.org/10.20858/tp.2019.14.3.15

License : (CC BY 4.0)

Received Date : 10-May-2018 / Accepted: 05-September-2019 / Published Online: 04-November-2019

ARTICLE

ABSTRACT

Parallel computations speed up simulation of multibody system dynamics, in particular, dynamics of railway vehicles and trains. It is important for reduction of required time at the stage of new railway vehicle design, for increase of complexity of studied problems and for real-time applications. We consider realization of parallel computations in Universal Mechanism software in three different areas: simulation of rail vehicle and train dynamics, evaluation of wheel profile wear and multi-variant computations. The use of clusters for parallel running of multi-variant computations is illustrated. Co-simulation based on the interface between Universal Mechanism and Matlab/Simulink and other software tools is discussed.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Wu, Q. & Spiryagin, M. & Cole C. & et al. Parallel computing in railway research. International Journal of Rail Transportation. 2018.

2. Featherstone, R. A divide-and-conquer articulated body algorithm for parallel O (log (n)) calculation of rigid body dynamics. Part 1: Basic algorithm. The International Journal of Robotics Research.1999. Vol. 18. No. 9. P. 867-875.

3. Featherstone, R. A divide-and-conquer articulated body algorithm for parallel O (log (n)) calculation of rigid body dynamics. Part 2: Trees, loops, and accuracy. The International Journal of Robotics Research. 1999. Vol. 18. No. 9. P. 876-892.

4. Fijany, A. & Sharf, I. & D’Eleuterio, G.M.T. Parallel O (log N) algorithms for computation of manipulator forward dynamics. IEEE Transactions on Robotics and Automation. 1995. Vol. 11. No. 3. P. 389-400.

5. Critchley, J.H. & Anderson, K.S. & Binani, A. An efficient multibody divide and conquer algorithm and implementation. Journal of Computational and Nonlinear Dynamics. 2009. Vol. 4. No. 2. 021001.

6. Fijany, A. & Featherstone, R. A new factorization of the mass matrix for optimal serial and parallel calculation of multibody dynamics. Multibody System Dynamics. 2013. Vol. 29. No. 2. P. 169-187.

7. Khan, I.M. & Anderson, K.S. A logarithmic complexity divide-and-conquer algorithm for multiflexible-body dynamics including large deformations. Multibody System Dynamics. 2015. Vol. 34. No.1. P. 81-101.

8. Chadaj, K. & Malczyk, P. & Fraczek, J. A parallel Hamiltonian formulation for forward dynamics of closed-loop multibody systems. Multibody System Dynamics. 2017. Vol. 39. No. 1-2. P. 51-77.

9. Liu, F. & Zhang, J. & Hu, Q. A modified constraint force algorithm for flexible multibody dynamics with loop constraints. Near Dynamics. 2017. Vol. 90. No. 3. P. 1885-1906.

10. Malczyk, P. & Fraczek, J & González, F. & et al. Index-3 divide-and-conquer algorithm for efficient multibody system dynamics simulations: theory and parallel implementation. Nonlinear Dynamics. 2019. Vol. 95. No. 1. P. 727-747.

11. Iglberger, K. & Rüde, U. Massively parallel rigid body dynamics simulations. Computer ScienceResearch and Development. 2009. Vol. 23. No. 3-4. P. 159-167.

12. Negrut, D. & Serban, R. & Mazhar, H. & et al. Parallel computing in multibody system dynamics: why, when and how. Journal of Computational and Nonlinear Dynamics. 2014. Vol. 9. No. 4. 041007.

13. Khatibi, F. & Esmaeili, M. & Mohammadzadeh, S. DEM analysis of railway track lateral resistance. Soils and Foundations. 2017. Vol. 57. No. 4. P. 587-602.

14. Tutumluer, E. & Qian, Y. & Hashash, Y.M.A. & et al. Discrete element modelling of ballasted track deformation behavior. International Journal of Rail Transportation. 2013. Vol. 1. No. 1-2. P. 57-73.

15. Fleissner, F. & Lehnart, A. & Eberhard, P. Dynamic simulation of sloshing fluid and granular cargo in transport vehicles. Vehicle system dynamics. 2010. Vol. 48. No. 1. P. 3-15.

16. Fisette, P. & Peterkenne, J.M. Contribution to parallel and vector computation in multibody dynamics. Parallel Computing. 1998. Vol. 24. P. 717-728.

17. Postiau, T. & Sass, L. & Fisette, P. & et al. High-performance multibody models of road vehicles: Fully symbolic implementation and parallel computation. 20th International Conference of Theoretical and Applied Mechanics. Chicago, 2000. In: Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility. 2001. Vol. 35. P. 57-83.

18. Anderson, K.S. & Duan, S. Highly parallelizable low order dynamics simulation algorithm for multi-rigid-body systems. Journal of Guidance. Control and Dynamics. 2000. Vol. 23. No. 2. P. 355-364.

19. Гетманский, В.В. & Горобцов, А.С. Решение задач большой размерности в системах моделирования многотельной динамики с использованием параллельных вычислений. Известия Волгоградского государственного технического университета. 2007. No. 9(35). P. 10-12. [In Russian: Getmansky, V.V. & Gorobtsov, A.S. Large-scale tasks solving in multibody dynamics simulation systems using parallel computing. Proceedings of Volgograd State Technical University].

20. Orlandea, N. & Chace, M.A. & Calahan, D.A. A sparsity oriented approach to the dynamic analysis and design of mechanical systems – Part I. Journal of Engineering for Industry. 1977. Vol. 99, No. 3. P. 773-784.

21. Haug, E.J. Computer-Aided Kinematics and Dynamics of Mechanical Systems Volume-I. Boston: Allyn and Bacon. 1989. 511 p.

22. Valasek, M. & Mraz, L. Parallelization of multibody system dynamics by heterogeneous multiscale method. In: Proceedings of Multibody Dynamics 2011, ECCOMAS Thematic Conference. Brussels. 2011.

23. Mraz, L. & Valasek, M. Solution of three key problems for massive parallelization of multibody dynamics. Multibody System Dynamics. 2013. Vol. 29. No. 1. P. 21-39.

24. Pogorelov, D. & Yazykov, V. & Lysikov, N. & et al. Train 3D: the technique for inclusion of three dimensional models in longitudinal train dynamics and its application in derailment studies and train simulators. Vehicle System Dynamics. 2017. Vol. 55. No. 4. P. 583-600.

25. Universal Mechanism. Bryansk: Laboratory of Computational Mechanics. Available at: https://www.universalmechanism.com/.

26. Pogorelov, D.Y. Jacobian matrices of the motion equations of a system of bodies. Journal of Computer and Systems Sciences International. 2007. Vol. 46. No. 4. P. 563-577.

27. Pogorelov, D.Y. Simulation of constraints by compliant joints. Journal of Computer and Systems Sciences International. 2011. Vol. 50. No. 1. P. 158-173.

28. Shewchuk, J.R. An introduction to the conjugate gradient method without the agonizing pain. Pittsburgh: Carnegie-Mellon University. 1994. 58 p.

29. Eberhard, P. Kontaktuntersuchungen durch hybride Mehrkörpersystem/Finite Elemente Simulationen. [In German: Contact investigations by hybrid multibody system / finite element simulations]. Aachen: Shaker Verlag; 2000. 318 p.

30. Saad Y. Iterative methods for sparse linear systems. 2nd ed. Philadelphia: SIAM. 2003. 528 p.

31. Kurdila, A. & Menon R.G. & Sunkel, J.W. Nonrecursive Order N formulation of multibody dynamics. Journal of Guidance Control and Dynamics. 1993. Vol. 16. No. 5. P. 838-844.

32. Sharf, I. & D’Eleuterio, G.M.T. An Iterative Approach to Multibody Simulation Dynamics Suitable for Parallel Implementation. Journal of Dynamic Systems, Measurement, and Control. 1993. Vol. 115. No. 4, P. 730-735.

33. Piotrowski, J. & Kik, W. A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations. Vehicle System Dynamics. 2008. Vol. 46. No. 1-2. P. 27-48.

34. Zobory, I. Prediction of Wheel/Rail Profile Wear. Vehicle System Dynamics. 1997. Vol. 28. No. 23. P. 221-259.

35. Goryacheva, I.G. & Zakharov, S.M. & Soshenkov, S.N. & et. al. Tribodynamic simulation of wheel/rail profile evolution and contact-fatigue damage accumulation for some variable track and vehicle parameters. Vniizht Bulletin (Railway Research Institute Bulletin). 2011. No. 1. P. 13-19.

36. Von Dist, K. & Ferrarotti, G. & Kik, W. & et al. Wear analysis of the high-speed-grinding Vehicle HSG-2: validation, simulation and comparison with measurements. In: 25th International Symposium on Dynamics of Vehicles on Roads and Tracks. Rockhampton, 2017.

37. Auciello, J. & Ignesti, M. & Marini, L. & et al. Development of a model for the analysis of wheel wear in railway vehicles. Meccanica. 2013. Vol. 48. No. 3. P. 681-697.

38. Craig, R. & Bampton, M. Coupling of substructures for dynamic analyses. AIAA Journal. 1968. Vol. 6. No. 7. P. 1313-1319.

39. Simeon, B. DAEs and PDEs in elastic multibody systems. Numerical Algorithms. 1998. Vol. 19. P. 235-246.

40. Hairer, E, Wanner, G. Solving ordinary differential equations II. Stiff and differential-algebraic problems. Berlin: Springer. 1996. 614 p.

41. Park, K.C. An improved stiff stable method for direct integration of nonlinear structural dynamic equations. Journal of Applied Mechanics. 1975. Vol. 42. No. 2. P. 464-470.

42. Nyman, L. & Laakso, M. Notes on the History of Fork and Join. IEEE Annals of the History of Computing. 2016. Vol. 38. No. 3. P. 84-87.

43. Archard, J.F. Contact and Rubbing of Flat Surface. Journal of Applied Physics. 1953. Vol. 24. No. 2. P. 981-988.

44. Vollebregt, E.A.H. User guide for CONTACT, rolling and sliding contact with friction (Technical Report TR09-03). Delft: VORtech CMCC. 2018. 141 p.

45. Wang, H. & Deng, Z. & Ma, S. & Sun, R. & Li, H. & Li, J. Dynamic Simulation of the HTS Maglev Vehicle-Bridge Coupled System Based on Levitation Force Experiment. IEEE Transactions on Applied Superconductivity. 2019. Vol. 29. No. 5. P. 1-6. Art no. 3601606. DOI: 10.1109/TASC.2019.2895503.

46. Matlab/Simulink. Available at: https://www.mathworks.com.

47. SimInTech. Available at: simintech.ru.

48. Wikipedia: Component Object Model. Available at: https://en.wikipedia.org/wiki/Component_Object_Model.

49. Öztürk, V. & Arar, Ö.F. & Rende, F.Ş. & et al. Validation of railway vehicle dynamic models in training simulators. Vehicle System Dynamics. 2017. Vol. 55. No. 1. P. 41-71.

EXTRA FILES

COMMENTS