EFFECTS OF RAIL-WHEEL PARAMETERS ON VERTICAL VIBRATIONS OF VEHICLES USING A VEHICLE–TRACK-COUPLED MODEL

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics , Transportation , Transportation Science & Technology

GET ALERTS

ISSN: 1896-0596
eISSN: 2300-861X

DESCRIPTION

4
Reader(s)
10
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 14 , ISSUE 3 (September 2019) > List of articles

EFFECTS OF RAIL-WHEEL PARAMETERS ON VERTICAL VIBRATIONS OF VEHICLES USING A VEHICLE–TRACK-COUPLED MODEL

Stasys STEIŠŪNAS * / Gintautas BUREIKA / Mykola GORBUNOV

Keywords : railway transport; wheel-flat; rail irregularities; mathematical modeling

Citation Information : Transport Problems. Volume 14, Issue 3, Pages 27-40, DOI: https://doi.org/10.20858/tp.2019.14.3.3

License : (CC BY 4.0)

Received Date : 03-June-2018 / Accepted: 23-August-2019 / Published Online: 04-November-2019

ARTICLE

ABSTRACT

This paper presents an insight into mathematical analysis of dynamic models of the vehicle–track system. After identification of its advantages and disadvantages, an improved three-dimensional "vehicle–track" system of a mathematical model is presented. It not only assesses the influence of realistic track irregularities but also on all elements of the railway structure: rail, rail pads, sleepers, ballasts, and subballast parameters on the wagon’s movement smoothness. Based on the expanded mathematical model of the “vehicle–track” dynamic system, the dynamic process of the wagon was theoretically studied, and the effect of track with irregularities on the vibrations of the wagon elements was studied. The final conclusions and recommendations are presented.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Popp, K. & Kruse, H. & Kaiser, I. Vehicle-track dynamics in the mid-frequency range: Vehicle system dynamics. International Journal of Vehicle Mechanics and Mobility. 2010. P. 37-41.

2. Сладковский, А. & Погорелов, Д.Ю. Исследование динамического взаимодействия  в контакте колесо-рельс при наличии ползунов на колесной паре. Вісник Східноукраїнського національного університету. 2008. No. 5(123), ч.1. P. 88-95. ISSN 1998-7927. [In Russian: Sladkowski, A. & Pogorelov, D.Yu. Investigation of the dynamic interaction in the wheel-rail contact in the presence of flat spots on the wheelset].

3. Vaičiūnas, G. & Bureika, G. & Steišūnas, S. Research on metal fatigue of rail vehicle wheel considering the wear intensity of rolling surface. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2018. 20(1): 24-29.

4. Steišūnas, S. & Dižo, J. & Bureika, G. & Žuraulis, V. Examination of vertical dynamics of passenger car with wheel flat considering suspension parameters. Procedia Engineering. TRANSBALTICA 2017. Transportation science and technology: proceedings of the 10th international scientific conference, May 4-5, 2017. Vilnius Gediminas Technical University, Vilnius, Lithuania. Amsterdam: Elsevier Ltd. ISSN 1877-7058. 2017. Vol. 187. P. 235-241.

5. Sawley, K. & Curtis, U. & Russell, W. The effect of hollow-worn wheels on vehicle stability in straight track. Wear. 2005. Vol. 258(7-8). P. 1100-1108.

6. Andersson, C. & Oscarsson, J. Dynamic train/track interaction including state-dependent track properties and flexible vehicle components. Vehicle System Dynamics Supplement. 1999. Vol. 33. P. 47-58. 

7. Wu, T.X. & Thompson, D.J. On the impact of noise generation due to a wheel passing over rail joints. Journal of Sound and Vibration. 2003. Vol. 267(3). P. 485-496. 

8. Johansson, A. & Nielsen, J.C.O. Out of round railway wheels, wheel rail contact forces and track response derived from the field tests and numerical simulation. Journal of Rail and Rapid Transit. 1995. Vol. 217. P. 135-146.

9. Nielsen, J. & Oscarsson, J. Simulation of dynamic train–track interaction with state-dependent track properties. Journal of Sound and Vibration. 2004. Vol. 275. P. 515-532.

10. Dong, R.G. Vertical dynamics of railway vehicle-track system. PhD Thesis, Concordia University. Montreal, Canada. 1994. 275 p.

11. Sun, Y.Q. & Simson, S. Wagon-track modelling and parametric study on rail corrugation initiation due to wheel stick-slip process on curved track. Wear. 2008. Vol. 265. P. 1193-1201.

12. Sayyaadi, H. & Shokouhi, N. A new model in rail–vehicles dynamics considering nonlinear suspension components behavior. International Journal of Mechanical Sciences. 2009. Vol. 51(3). P. 222-232.

13. Мямлин, С.В. Исследование пространственных колебаний длиннобазного вагонаплатформы. Железнодорожный транспорт Украины. 2009. Vol. 6. P. 47-49. [In Russian: Myamlin, S.V. Investigation of spatial oscillations of a long-base platform car. Railway transport of Ukraine].

14. Wang, W.L. & Yu, D.S. & Zhou, Z. In-service parametric modelling of a rail vehicle's axle-box hydraulic damper for high-speed transit problems. Mechanical Systems and Signal Processing. 2015. Vol. 62-63. P. 517-533.

15. Vesnitskii, A.I. & Kononov, A.V. & Metrikine, A.V. Transition radiation in two-dimensional elastic systems. Journal of Applied Mechanics and Technical Pphysics. 1995. Vol. 36(3). P. 468475.

16. Dahlberg, T. Track issues. In: Iwnicki, S. (Ed.) Handbook of railway vehicle dynamics. CRC Press, FL, 2006. P.143-179.

17. Giannakos, K. Actions on railway tracks, due to an isolated defect. International Journal of Control and Automation. 2014. Vol. 7(3). P. 195-212. 

18. Sładkowski, A. Modeling of the deformation of elastic pads for rail fastenings. Transport Problems. 2009. Vol. 4. No. 1. P. 63-70. ISSN 1896-0596.

19. Ding, J. Time-frequency analysis of wheel-rail shock in the presence of wheel flat. Journal of Traffic and Transportation Engineering (english edition). 2014. Vol. 1(6). P. 457-466.

20. Alexandrou, G. & Kouroussis, G. & Verlinder, O. A comperhensive prediction model for vihicle/track/soil dynamic response due to wheel flats. Rail and Rapid Transit. 2016. Vol. 230(4). P. 1088-1104.

21. Rajib, U.A.U. Analysis of a three-dimensional railway vehicle-track system and development of a smart wheelset. PhD Thesis. Concordia University Montreal, Quebec. Canada. 2012. 293 p.

22. Sun, Y.Q. & Cole C. Comprehensive wagon–track modelling for simulation of a three-piece bogie suspension dynamics. In: Proceedings of the institution of mechanical engineers, Part C: Journal of Mechanical Engineering Science. 2007. Vol. 221(8). P. 905-917.

EXTRA FILES

COMMENTS