ANALYSIS OF SHAFT WEAR IN TURBOCHARGES OF AUTOMOTIVE VEHICLES

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics , Transportation , Transportation Science & Technology

GET ALERTS

ISSN: 1896-0596
eISSN: 2300-861X

DESCRIPTION

4
Reader(s)
5
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 14 , ISSUE 3 (September 2019) > List of articles

ANALYSIS OF SHAFT WEAR IN TURBOCHARGES OF AUTOMOTIVE VEHICLES

Damian HADRYŚ * / Henryk BĄKOWSKI / Zbigniew STANIK / Andrzej KUBIK

Keywords : charging the internal combustion engine; turbocharger; friction; lubrication

Citation Information : Transport Problems. Volume 14, Issue 3, Pages 85-96, DOI: https://doi.org/10.20858/tp.2019.14.3.8

License : (CC BY 4.0)

Received Date : 15-May-2018 / Accepted: 26-August-2019 / Published Online: 04-November-2019

ARTICLE

ABSTRACT

The article presents the results of the investigations of turbocharger shaft bearing using different kinds of lubrication conditions (dry friction and lubrication with different kind of oils). In particular, the wear of the turbocharger shaft surface was evaluated. One of the most frequent failures is the seizure of the turbocharger shaft in the slide bearing, causing its rotation, which leads to destruction of the assembly and costly repairs. On the basis of the conducted tests, it was found that the average value of representative breaks surface on the turbocharger shaft are reduced using of a less viscous oil. Similar situation was seen using new oil instead overworked oil – it had an influence on the value of diameter of breaks.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Mysłowski, J. Doładowanie silników. [In Polish: Engine boost]. Wydawnictwo Komunikacji i Łączności. Warszawa 2016.

2. Zając P. Silniki pojazdów samochodowych - część 2 – Układy zasilania, chłodzenia, smarowania dolotowe i wylotowe. [In Polish: Automotive engines - part 2 - Supply, cooling, intake and exhaust lubrication systems]. Wydawnictwo Komunikacji i Łączności. Warszawa 2010.

3. Padzillah, M.H. & Rajoo, S. & Martinez-Botas, R.F. Experimental and numerical investigation on flow angle characteristics of an automotive mixed flow turbocharger turbine. Jurnal Teknologi. 2015. Vol. 77. No. 8. P. 7-12.

4. Sendyka, B. & Filipczyk, J. Twin turbocharging system of medium displacement spark ignition engine. Combustion Engines. 2009. SC2. P. 264-268.

5. Dudziński, W. & Haimann, K. & Lachowicz, M. Struktura i własności materiałowe łożysk ślizgowych turbosprężarek współpracujących z silnikami spalinowymi. Tribologia. 2002. No. 4. P. 1133-1141. [In Polish: Structure and material properties of turbocharger slide bearings working with internal combustion engines.].

6. Chen, W.J. Rotordynamics and bearing design of turbochargers. Mechanical Systems and Signal Processing. 2012. Vol. 29. P. 77-89.

7. Mazurkow, A. The study of rotating units in turbochargers, the influence of relative clearance in siding bearings with a floating ring on static and dynamic properties. Scientific Problems of Machines Operation and Maintenance. 2009. Vol. 44. No. 1(157). P. 19-28.

8. Jaskólski, J. & Budzik, G. & Marciniec, A. Balancing of turbocharger rotors. Journal of KONES. 2007. Vol. 14. No. 2. P. 217-222.

9. Burkinshawa, M. & Blacker, D. The high temperature tribological performance of turbocharger wastegate materials. In: 11th International Conference on Turbochargers and Turbocharging. Institution of Mechanical Engineers. 2014. P. 289-298.

10. Yang, K. & Fletcher, K.A. & Styer, J.P. & Lam, W.Y. & Guinther, G.H.: Engine oil components effects on turbocharger protection and the relevance of the TEOST 33C test for gasoline turbocharger deposit protection. SAE International Journal of Fuels and Lubricants. 2017. Vol. 10. No. 3. P. 815-821.

11. Lee, W. & Schubert, E. & Li, Y. & Li, S. & Bobba, D. & Sarlioglu, B. Overview of electric turbocharger and supercharger for downsized internal combustion engines. IEEE Transactions on Transportation Electrification. 2017. Vol. 3. No. 1. P. 36-47.

12. Park, J.B. & Lee, J.I. & Ryu, J.H. Microstructure of titanium aluminide prepared by centrifugal investment casting for automotive turbocharger. Journal of Ceramic Processing Research. 2017. Vol. 18. No. 5. P. 399-403.

13. Deligant, M. & Podevin, P. & Descombes, G. Experimental identification of turbocharger mechanical friction losses. Energy. 2012. Vol. 39. No. 1. P. 388-394.

14. Chuepeng, S. & Saipom, S. Lubricant thermo-viscosity effects on turbocharger performance at low engine load. Applied Thermal Engineering. 2018. Vol. 139. P. 334-340.

15. Romagnoli, A. & Manivannan, A. & Rajoo, S. & Chiong, M. S. & Feneley, A. & Pesiridis, A. & Martinez-Botas, R.F. A review of heat transfer in turbochargers. Renewable and Sustainable Energy Reviews. 2017. Vol. 79. P. 1442-1460.

16. Moreira, M.F. Failure analysis in aluminium turbocharger wheels. Engineering Failure Analysis. 2016. Vol. 61. P. 108-118.

17. Zheng, X.Q. & Zhang, Y.J. & Yang, M.Y. Research and development on transonic compressor of high pressure ratio turbocharger for vehicle internal combustion engines. Science ChinaTechnological Sciences. 2010. Vol. 53. No. 7. P. 1817-1823.

EXTRA FILES

COMMENTS