THE IMPACT OF CHANGING THE FUEL DOSE ON CHOSEN PARAMETERS OF THE DIESEL ENGINE START-UP PROCESS

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics , Transportation , Transportation Science & Technology

GET ALERTS

ISSN: 1896-0596
eISSN: 2300-861X

DESCRIPTION

5
Reader(s)
10
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 14 , ISSUE 4 (December 2019) > List of articles

THE IMPACT OF CHANGING THE FUEL DOSE ON CHOSEN PARAMETERS OF THE DIESEL ENGINE START-UP PROCESS

Jacek CABAN / Paweł DROŹDZIEL / Piotr IGNACIUK / Paweł KORDOS

Keywords : diesel engine; start-up process; operational; reliability

Citation Information : Transport Problems. Volume 14, Issue 4, Pages 51-62, DOI: https://doi.org/10.20858/tp.2019.14.4.5

License : (CC BY 4.0)

Received Date : 21-March-2018 / Accepted: 07-October-2019 / Published Online: 08-December-2019

ARTICLE

ABSTRACT

For internal combustion engines, many faults relating to the combustion process can occur, which affect the engine technical condition, its electrical equipment, the natural environment, etc. This article presents the results of the influence of the regulatory factor, which was the fuel dose (3 dose values), on selected parameters of the start-up process at constant settings of other control parameters (fuel injection advance angle and injection pressure). The tests of the start-up process were carried out on a fourstroke single-cylinder diesel engine. In this study, the results of the following electrical start-up parameters were analyzed: the maximum current consumed by the starter, difference of voltages on the battery before and after the start-up, voltage drop on the battery at the beginning of the start-up, average power of the starter, starter operation time, and the maximum pressure value in the first combustion cycle.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Caban, J. & Droździel, P. & Ignaciuk, P. & Kordos, P. Analysis of the effect of the fuel dose on selected parameters of the diesel engine start-up process. 13th International Scientific Conference on Sustainable, Modern and Safe Transport (TRANSCOM 2019), High Tatras, Novy Smokovec – Grand Hotel Bellevue, Slovak Republic, May 29-31, 2019. Transportation Research Procedia. 2019. Vol. 40. P. 647-654.

2. Ipci, D. & Karabulut, H. Thermodynamic and dynamic modelling of a single cylinder four stroke diesel engine. Applied Mathematical Modelling. 2016. Vol. 40. P. 3925-3937.

3. Šarkan, B. & Caban, J. & Marczuk, A. & et al. Composition of exhaust gases of spark ignition engines under conditions of periodic inspection of vehicles in Slovakia. Przemysl Chemiczny. 2017. Vol. 96. No. 3. P. 675-680.

4. Skrucany, T. & Semanova, S. & Figlus, T. & et al. Energy intensity and GHG production of chosen propulsions used in road transport. Communications - Scientific Letters of the University of Zilina, 2017. Vol. 19. No. 2. P. 3-9.

5. Šarkan, B. & Stopka, O. Quantification of road vehicle performance parameters under laboratory conditions. Advances in Science and Technology Research Journal. 2018. Vol. 12. No. 3. P. 1623.

6. Lizbetin, J. & Stopka, O. & Kurenkov, P.V. Declarations regarding the energy consumption and emissions of the greenhouse gases in the road freight transport sector. The Archives of Automotive Engineering – Archiwum Motoryzacji. 2019. Vol. 83. No. 1. P. 59-72.

7. Skrucany, T. & Harantova, V. & Kendra, M. & Barta, D. Reducing energy consumption by passenger car with using of non-electrical hybrid drive technology. Advances in Science and Technology Research Journal. 2018. Vol. 11. No. 1. P. 166-172.

8. Broatch, A. & Lujan, J.M. & Ruiz, S. & Olmeda, P. Measurement of hydrocarbon and carbon monoxide emissions during the starting of automotive DI diesel engines. International Journal of Automotive Technology. 2008. Vol. 9. No. 2. P. 129-140.

9. Broatch, A. & Ruiz, S. & Margot, X. & Gil, A. Methodology to estimate the threshold in-cylinder temperature for self-ignition of fuel during cold start of Diesel engines. Energy. 2010. Vol. 35. No. 5. P. 2251-2260.

10. Charles, P. & Sinha, J.K. & Gu, F. & et al. Detecting the crankshaft torsional vibration of diesel engines for combustion related diagnosis. Journal of Sound and Vibration. 2009. Vol. 321. P. 1171-1185.

11. Abramek, K.F. & Stoeck, T. & Osipowicz, T. Statistical evaluation of the corrosive wear of fuel injector elements used in Common Rail Systems. Strojniski Vestnik – Journal of Mechanical Engineering. 2015. Vol. 61. No. 2. P. 91-98.

12. Balytskyi, O.I. & Abramek, K.F. & Shtoeck, T. & Osipowicz, T. Diagnostics of degradation of the lock of a sealing ring according to the loss of working gases of an internal combustion engine. Materials Science. 2014. Vol. 50. No. 1. P. 156-159.

13. Danilov, I. & Popova, I. & Moiseev, Y. Analysis and validation of the dynamic method for diagnosing diesel engine connecting rod bearings. Transport Problems. 2018. Vol. 13. No. 1. P. 123-133.

14. Desantes, J.M. & Garcia-Oliver, J.M. & Pastor, J.M. & Ramirez-Hernandez, J.G. Influence of nozzle geometry on ignition and combustion for high-speed direct injection diesel engines under cold start conditions. Fuel. 2011. Vol. 90. No. 11. P. 3359-3368.

15. Desbazeille, M. & Randall, R.B. & Guillet, F. & et al. Model-based diagnosis of large diesel engines based on angular speed variations of the crankshaft. Mechanical Systems and Signal Processing. 2010. Vol. 24. P. 1529-1541.

16. Figlus, T. & Konieczny, Ł. & Burdzik, R. & Czech, P. The effect of damage to the fuel injector on changes of the vibroactivity of the diesel engine during its starting. Vibroengineering Procedia. 2015. Vol. 6. P. 180-184.

17. Rimkus, A. & Matijosius, J. & Bogdevicius, M. & et al. An investigation of the efficiency of using O-2 and H-2 (hydrooxile gas-HHO) gas additives in a ci engine operating on diesel fuel and biodiesel. Energy. 2018. Vol. 152. P. 640-651.

18. Mikulski, M. & Duda, K. & Wierzbicki, S. Performance and emissions of a CRDI diesel engine fuelled with swine lard methyl esters–diesel mixture. Fuel. 2016. Vol. 164. P. 206-219.

19. Roberts, A. & Brooks, R. & Shipway, P. Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions. Energy Conversion and Management. 2014. Vol. 82. P. 327-350.

20. Zahdeh, A.K. & Henein, N. & Bryzik, W. Diesel cold starting: actual cycle analysis under borderline conditions. SAE Paper 900441. 1990.

21. Kuranc, A. & Słowik, T. & Wasilewski, J. & et al. Emission of particulates and chosen gaseous exhausts components during a diesel engine starting process. 9th International Scientific Symposium on Farm Machinery and Process Management in Sustainable Agriculture, Lublin, Poland. NOV. 22-24, 2017. P. 210-215.

22. Abramek, K.F. Phenomenon of load losses at the engine start-up stage. TEKA Komisji Motoryzacji i Energetyki Rolnictwa PAN. 2008. 8A. P. 7-11.

23. Ambrozik, A. & Ambrozik, T. & Łagowski, P. Fuel impact on emissions of harmful components of the exhaust gas from the CI engine during cold start-up. Eksploatacja i Niezawodność – Maintenance and Reliability. 2015. Vol. 17. No. 1. P. 95-99.

24. Cui, Y. & Peng, H. & Deng, K. & Shi, L. The effects of unburned hydrocarbon recirculation on ignition and combustion during diesel engine cold starts. Energy. 2014. Vol. 64. P. 323-329.

25. Pacaud, P. & Perrin, H. & Laget, O. Cold start on diesel engine: is low compression ratio compatible with cold start requirements? SAE Technical Paper 2008-01-1310. 2008.

26. Payri, F. & Broatch, A. & Salavert, J.M. & Martín, J. Investigation of Diesel combustion using multiple injection strategies for idling after cold start of passenger-car engines. Experimental Thermal and Fluid Science. 2010. Vol. 34. P. 857-865.

27. Weilenmann, M., Soltic, P., Saxer, C., Forss, A.M., Heeb, N., 2005. Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures. Atmospheric Environment. 2005. Vol. 39. P. 2433-2441.

28. Weilenmann, M. & Favez, J.Y. & Alvarez, R. Cold-start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories. Atmospheric Environment. 2009. Vol. 43. P. 2419-2429.

29. Peng, H. & Cui, Y. & Shi, L. & Deng, K. Effects of exhaust gas recirculation (EGR) on combustion and emissions during cold start of direct injection (DI) diesel engine. Energy. 2008. Vol. 33. No. 3. P. 471-479.

30. Peng, H.Y. & Cui, Y. & Deng, H.Y. & et al. Combustion and emissions of a direct injection diesel engine during cold start under different exhaust valve closing timing conditions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2008. Vol. 222. No. 1. P. 119-129.

31. Droździel, P. & Krzywonos, L. Ocena niezawodności pierwszego dziennego rozruchu silnika  o zapłonie samoczynnym w warunkach użytkowania pojazdu. Eksploatacja i Niezawodność – Maintenance and Reliability. 2009. Vol 41. No. 1. P. 4-10. [In Polish: Assessment of the reliability of the first daily start of a compression-ignition engine under vehicle use conditions].

32. Jedliński, Ł. & Caban, J. & Krzywonos, L. & et al. Application of the vibration signal in the diagnosis of the valve clearance of an internal combustion engine. Vibroengineering Procedia. 2014. Vol. 3. P. 14-19.

33. Caban, J. Wpływ parametrów wtrysku paliwa na przebieg procesu rozruchu silnika o zapłonie samoczynnym. PhD thesis. Lublin: Politechnika Lubelska. 2018. 165 p. [In Polish: Influence of fuel injection parameters on the course of the diesel engine starting process. PhD thesis. Lublin: Lublin University of Technology].

34. BN-84/1301-08 Silniki o zapłonie samoczynnym. Wtryskiwacze. Wymagania i badania. [In Polish: Diesel engines. Injectors. Requirements and tests].

EXTRA FILES

COMMENTS