STEEL RELIEVING CONSTRUCTIONS IN MINING AREAS AS TEMPORARY OR PERMANENT RAILWAY BRIDGES

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics , Transportation , Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

7
Reader(s)
30
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 15 , ISSUE 2 (June 2020) > List of articles

STEEL RELIEVING CONSTRUCTIONS IN MINING AREAS AS TEMPORARY OR PERMANENT RAILWAY BRIDGES

Piotr BĘTKOWSKI

Keywords : relieving construction; temporary viaduct; Bridge; mining area; damage; railway line

Citation Information : Transport Problems. Volume 15, Issue 2, Pages 107-118, DOI: https://doi.org/10.21307/tp-2020-024

License : (CC BY 4.0)

Received Date : 03-February-2019 / Accepted: 09-June-2020 / Published Online: 18-June-2020

ARTICLE

ABSTRACT

This article describes three examples of bridge-type relieving constructions located on railway lines in the areas of active mining exploitation. It discusses how to take into account mining influences and how to support a temporary relieving construction on the railway embankment. This article discusses the incorrect solutions and their consequences. The first example involves the protection of train traffic continuity during the replacement of bridge span under an intensively used railway line. The second example shows the incorrect use of the relieving construction, leading to the relaxation of soil ground base and failure of a small brick arch railway bridge. The third example describes the use of the relieving construction as a permanent span of the railway bridge locates in the area where mining subsidence is over 14 m. The railway line locates on the third bridge; it is a single-track line, which is the only way to transport coal and equipment needed for operation in a large underground coal mine; interruptions of railway traffic longer than 4 working days (5 consecutive days) are unacceptable. This article has basic information about the effects of mining impacts, bridge-type steel relief constructions and a theoretical introduction enabling analysis of interactions of temporary supports and embankment in mining areas. All examples, especially the third one, contribute to development of knowledge in the field of civil engineering and transport.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Salamak, M. Obiekty mostowe na terenach z deformującym się podłożem w świetle kinematyki brył. Wydawnictwo Politechniki Śląskiej, Gliwice. 2013. 228 p. Available at https://www.researchgate.net/publication/256839657_Obiekty_mostowe_na_terenach. [In Polish: Bridge structures located on areas with ground deformations in the light of solids kinematics].

2. Wytyczne techniczno-budowlane projektowania i wykonywania obiektów mostowych na terenach eksploatacji górniczej. Ministerstwo Komunikacji. 1977. 43 p. [In Polish: Technical and construction guidelines for design and construction of bridge objects in mining areas].

3. Bętkowski, P. Conclusions from observation the small crisp arch bridges located on mining areas. Procedia Engineering. 2016. Vol. 161. P. 687-692. DOI.org/10.1016/j.proeng.2016.08.738.

4. Bętkowski, P. Analysis of Mining Influences on a Small Frame Railway Viaduct. IOP Conference Series: Earth and Environmental Science. 2019. Vol. 362(012142). P. 1-10. DOI: 10.1088/1755- 1315/362/1/012142.

5. Wen, Qing Jie & Lu, Hui. Bridge Disaster Prevention and Disposal Methods in Mining Area. Applied Mechanics and Materials. 2012. Vol. 204-208. P. 3494-3498. DOI: 10.4028/www.scientific.net/AMM.204-208.3494.

6. Surowiecki, A. & Piotr Sask, P. & Ksiadzyna, K. & Ryczynski J. Traffic infrastructure in mining areas (selected problems). Scientific Journal of the Military University of Land Forces. 2019. Volume 51. Number 3(193). P. 558-578. DOI: 10.5604/01.3001.0013.5010.

7. Graczyk, M. & Woch, M. & Skulski, B. Construction of railway bridges made of flexible structural plates. Live load test. Archives of Institute of Civil Engineering. 2017. Vol. 23. P. 117- 124. DOI: 10.21008/j.1897-4007.2017.23.11.

8. Chróścielewski, J. & Banaś, A. & Malinowski, M. & Miśkiewicz, M. Kolejowe konstrukcje odciążające typu mostowego w świetle badań in situ i analiz teoretycznych. Archiwum Instytutu Inżynierii Lądowej. 2011. No. 10. P. 39-54. Available at: https://www.researchgate.net/publication/309683184_Kolejowe_konstrukcje_odciazajace_typu. [In Polish: Railway relieving constructions of bridge type in the light of situ research and theoretical analysis].

9. Eum, Ki-Y. & Bae, J.-H. & Choi, Ch.-Y. Evaluation of Train Running Safety During Construction of Temporary Bridge on Existing Railway. Journal of the Korean Society for Railway. 2011. Vol. 14. No. 3. P. 234-239. Available at: http://koreascience.or.kr/article/JAKO201129362564137.page.

10. Special Topics Report. Railway Bridges in Ireland & Bridge Strike Trends. Railway Safety Commission. 2009. 121 p. Available at: https://www.crr.ie › assets › files › pdf › bridgestrikesireland1.

11. BN-73/8939-04. Konstrukcje odciążające pod czynnymi torami kolejowymi. Wydawnictwa Normalizacyjne. 1973. 5 p. Available at: http://bc.pollub.pl/dlibra/publication/5420/edition/5051?language=pl. [In Polish: Relieving constructions under active railway tracks].

12. Frangopol, D. & Tsompanakis Y. Maintenance and Safety of Aging Infrastructure: Structures and Infrastructure. Book Series. Vol. 10. CRC Press, New York, US. 2014. 746 p.

13. Railway Guideline. Deliverable 1.3: New technologies to extend the life of elderly rail infrastructure. Maintenance, renewal and Improvement of rail transport infrastructure to reduce Economic and environmental impacts (Project co-funded by the European Commission within the 7th Framework Programme - several European countries participated). ARTTIC. 2014. 194 p. Available at: www.mainline-project.eu › IMG › pdf › ml-d1.3-f-new_technologies.

14. Standardy Techniczne: szczegółowe warunki techniczne dla modernizacji lub budowy linii kolejowych do prędkości Vmax ≤ 200 km/h (...)/ 250 km/h (...)). Vol. III: Bridge objects. Warszawa. 2010. 84 p. Available at: https://www.plk-sa.pl/dla-klientow-i-kontrahentow/aktyprawne-i-przepisy/standardy-techniczne. [In Polish: Technical Standards: detailed technical conditions for the modernization or construction of railway lines up to a speed Vmax ≤ 200 km/h (...) /250km/h (...)].

15. Mannhardt, F. & Landmark, A.D. Mining railway traffic control logs. Transportation Research Procedia. 2019. 37. P. 227-234. Available at: http://dx.DOI.org/10.1016/j.trpro.2018.12.187.

16. Bai, Yong & Burkett W.R. Rapid bridge replacement: processes, techniques and needs for Improvements. Journal of Construction Engineering and Management. ASCE. 2006. Vol. 132. No. 11. November 1. P. 1139-1147. DOI: 10.1061/ASCE0733-93642006132:111139.

17. Burkett, W.R. & Nash, P.T. & Bai, Y. & Hays, C. & Jones, C. Rapid bridge replacement techniques. Center for Multidisciplinary Research in Transportation. Texas Department of Transportation. Report No. 0-4568-1. 2004. 212 p. Available at: https://www.depts.ttu.edu › complete_reports › 4568-1Rapid_Bridge.

18. Railway Guideline. Deliverable 3.4: Guideline for replacement of elderly rail infrastructure. Maintenance, renewal and Improvement of rail transport infrastructure to reduce Economic and environmental impacts (Project co-funded by the European Commission within the 7th Framework Programme - several European countries participated). ARTTIC. 2014. 121 p. (link: mainline-project.eu › IMG › pdf › ml-d3.4-guideline).

19. ID-16. Instrukcja utrzymania kolejowych obiektów inżynieryjnych na liniach kolejowych o prędkości do 200/250 km/h. ID-16. Warszawa. 2014. 153 p. Available at: https://www.researchgate.net/publication/275957867_INSTRUKCJA _utrzymania_kolejowych. [In Polish: Instructions for maintenance of railway engineering objects on railway lines with speeds up to 200/250 km/h. ID-16].

20. Bętkowski, P. Koncepcje przebudowy wiaduktu kolejowego poddanego wpływom eksploatacji górniczej. Archiwum Instytutu Inżynierii Lądowej. 2009. No. 5. P. 51-62. Available at: www.researchgate.net/publication/307466898_Koncepcje_przebudowy_wiaduktu. [In Polish: Conceptions rebuilding railway viaduct under influence of coal mining].

21. Salunkhe, D.P. & Chvan, G. & Bartakke R.N. & R Kothavale P.R. An Overview on Methods for Slope Stability Analysis. International Journal of Engineering Research and Technology. 2017. Vol. 6. No. 03. P. 528-535. DOI: 10.17577/IJERTV6IS030496.

22. Bogusz, W. & Godlewski, T. Geotechnical design of railway embankments – requirements and challenges. MATEC Web of Conferences. 2019. Vol. 262(11002). P. 1-8. Available at: https://doi.org/10.1051/matecconf/201926211002.

23. Likitlersuang, S. & Pholkainuwatra, P. & Chompoorat, T. & Keawsawasvong, K. Numerical Modelling of Railway Embankments for High-Speed Train Constructed on Soft Soil. Journal of GeoEngineering. 2018. Vol. 13. No. 3. P. 149-159. Available at: http://dx.doi.org/10.6310/jog.201809_13(3).6).

24. Chun-Ming, XU. Study on temporary support of continuous girder bridge in construction. World Construction. 2017. Vol. 6. No. 1. P. 8-13. Available at: www.researchgate.net/publication/316639751_Study_on_temporary_support_of_continuous.

EXTRA FILES

COMMENTS