Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology


eISSN: 2300-861X





Volume / Issue / page

Related articles

VOLUME 15 , ISSUE 3 (September 2020) > List of articles


Tomasz BIAŁECKI * / Bartosz GAWRON / Bolesław GIEMZA / Jadwiga GŁĄB

Keywords : nitrile rubber; synthetic fuel; HEFA; seal swelling

Citation Information : Transport Problems. Volume 15, Issue 3, Pages 29-41, DOI:

License : (CC BY 4.0)

Received Date : 05-March-2019 / Accepted: 26-August-2020 / Published Online: 05-September-2020



This paper investigates the influence of alternative fuel on selected butadiene–acrylonitrile rubbers used as seals in engine and fuel supply systems of postSoviet aircrafts. The conventional fuel Jet A-1, the synthetic blending component from hydrotreated esters and fatty acids (HEFA) and its blend were interacted with the sample nitrile rubbers. HEFA technology has been approved by ASTM D7655 for use in turbine aircraft engines. The effect was evaluated on the basis of changes in the nitrile rubber’s volume, mass and hardness. It has been confirmed that the synthetic component containing no aromatic hydrocarbons has a different effect on nitrile rubber than the conventional fuel. When the nitrile rubbers were subjected to microscopic observations, the most frequently observed effect was washing out or dissolving of nitrile rubber surface fragments.

Content not available PDF Share



1. Airports Council International (ACI). ACI global traffic forecast report 2008 – 2027. In: Conference on the economics of airports and air navigation services, Conference on the Economics of Airports and Air Navigation Services. Montréal. 2008.

2. The International Air Transport Association (IATA). Fact Sheet. Climate Change & CORSIA, 2018. Available at:

3. Ploetner, K.O. & Rothfeld, R. & Urban, M. & Hornung, M. & Tay, G. & Oluwaferanmi, O. Technological and Operational Scenarios on Aircraft Fleet-Level towards ATAG and IATA 2050 Emission Targets. In: 17th AIAA Aviation Technology, Integration, and Operations Conference. Denver, Colorado. 2017.

4. Yang, J. & Xin, Z. & He, Q. (Sophia) & Corscadden, K. & Niu, H. An overview on performance characteristics of bio-jet fuels. Fuel. 2019. Vol. 237. P. 916-936.

5. Gawron, B. & Białecki, T. Impact of a Jet A-1/HEFA blend on the performance and emission characteristics of a miniature turbojet engine. International Journal of Environmental Science and Technology. 2018. Vol. 15. No. 7. P.1501-1508.

6. Sarnecki, J. & Białecki, T. & Gawron, B. & Głąb, J. & Kamiński, J. & Kulczycki, A. & Romanyk, K. Thermal Degradation Process of Semi-Synthetic Fuels for Gas Turbine Engines in Non-Aeronautical Applications. Polish Maritime Research. 2019. Vol. 2. No. 1. P.65-71.

7. ASTM D 7566:2020. Standard Specification for Aviation Turbine Contanining Synthesized Hydrocarbons. ASTM International, USA.

8. Zhang, L. & Hu, G. Supply chain design and operational planning models for biomass to drop-in fuel production. Biomass and Bioenergy. 2013. Vol. 58. P. 238-250.

9. AFRL. Handbook of aviation fuel properties. Third edition (AFRL-PR-WP-TR-2004-2127). Coordinating Research Council, 2004.

10. Hemighaus, G. & Boval, T. & Bacha, J. & Barnes, F. & Franklin, M. & Gibbs, L. & Hogue, N. & Jones, J. & Lesnini, D. & Lind, J. & Morris, J. Aviation fuels technical review. Chevron Products Company. 2006.

11. Schripp, T. & Herrmann, F. & Oßwald, P. & Köhler, M. & Zschocke, A. & Weigelt, D. & Mroch, M. & Werner-Spatz, C. Particle emissions of two unblended alternative jet fuels in a full scale jet engine. Fuel. 2019. Vol. 256. 115903.

12. Chiong, M.C. & Chong; C.T. & Ng, J.-H. & Lam, S.S. & Tran, M.-V. & Chong, W.V.F. & Jaafar, M.N.M. & Valera-Medina, A. Liquid biofuels production and emissions performance in gas turbines: A review, Energy Conversion and Management. 2018. Vol. 173. P. 640-658.

13. Han, H.S. & Kim, C.J. & Cho, C.H. & Sohn, C.H. & Han, J. Ignition delay time and sooting propensity of a kerosene aviation jet fuel and its derivative blended with a bio-jet fuel. Fuel. 2018. Vol. 232. P. 724-728.

14. Wei, H. & Liu, W. & Chen, X. & Yang, Q. & Li, J. & Chen, H. Renewable bio-jet fuel production for aviation: A review. Fuel. 2005. Vol. 254. 115599.

15. Dagaut, F. & Diévart, P. Combustion of synthetic jet fuels: Naphthenic cut and blend with a gasto-liquid (GtL) jet fuel. Proceedings of the Combustion Institute. 2017. Vol. 36. No. 1. P. 433-440.

16. Sonthalia, A. & Kumar, N. Hydroprocessed vegetable oil as a fuel for transportation sector: A review. Journal of the Energy Institute. 2019. Vol. 92. No. 1. P. 1-17.

17. Xue, X. & Hui, X. & Singh, P. & Sung, C.-J. Soot formation in non-premixed counterflow flames of conventional and alternative jet fuels. Fuel. 2017. Vol. 210. P. 343-351.

18. Kass, M. & Theiss, T. & Janke, C. & Pawel, S. & Chapin, J.T. & Yang, E. & Boyce, K. Compatibility of elastomers with test fuels of gasoline blended with ethanol. Sealing Technology. 2012. Vol. 2012. No. 12. P. 7-12.

19. Liu, G. & Yan, B. & Chen G. Technical review on jet fuel production. Renewable and Sustainable Energy Reviews. 2013. Vol. 25. P. 59-70.

20. Muzzell, P. & Stavinoha, L. & Chapin, R. Synthetic Fischer-Tropsch (FT) JP-5/JP-8 aviation turbine fuel elastomer compatibility. Final Report. TARDEC Technical Report. No. 15043. 2005.

21. Antczak, B. i inni. Guma: poradnik inżyniera i technika: praca zbiorowa. Wydawnictwa Naukowo-Techniczne, Warszawa, 1981. [In Polish: Antczak B. et al. Rubber: engineering and technical guide: collective work. Scientific and Technical Publishers, Warsaw].

22. Akhlaghia, S. & Pourrahimia, A.M. & Hedenqvista, M.S. & Sjöstedtb, C. & Bellanderb, M. & Geddea, U.W. Degradation of carbon-black-filled acrylonitrile butadiene rubber in alternative fuels: Transesterified and hydrotreated vegetable oils. Polymer Degradation and Stability. 2016. Vol. 123. P. 69-79.

23. Mathai, A.E. & Thomas, S. Transport of aromatic hydrocarbons through crosslinked nitrile ubber membranes. Journal of Macromolecular Science. 1996. Vol. B35. No. 2. P.229-253.

24. Blivernitz, A. & Försterb, T. & Eibl, S. Chemometric prediction of swelling potentials of aviation fuels towards elastomers using various spectroscopic data. Polymer Testing. 2019. Vol. 76. P. 261- 272.

25. Blivernitz, A. & Forster, T. & Eibl, T. Simultaneous and time resolved investigation of diffusion processes of individual model fuel components in acrylonitrile-butadiene-rubber in the light of swelling phenomena. Polymer Testing. 2018. Vol. 70. P. 47-56.

26. Ortner, J. Material Compatibility. Wehrwissenschaftliche Institut für Werk-und Betriebsstoffe (WIWeB). 2015.

27. Corporan, E. & Edwards, T. & Shafer, L. & DeWitt, M.J. & Klingshirn, C. & Zabarnick, S. & West, Z. & Striebich, R. & Graham, J. & Klein, J. Chemical, Thermal Stability, Seal Swell, and Emissions Studies of Alternative Jet Fuels. Energy Fuels. 2011. Vol. 25. No. 3. P. 955-966.

28. Link, D.D. & Gormley, R.J. & Baltrus, J.P. & Anderson, R.R. & Zandhuis, P.H. Potential Additives to Promote Seal Swell in Synthetic Fuels and Their Effect on Thermal Stability. Energy Fuels. 2008. Vol. 22. No. 2. P. 1115-1120.

29. Graham, J.L. & Striebich, R.C. & Myers, K.J. & Minus, D.K. & William, E. & Harrison, W.E. Swelling of Nitrile rubber by Selected Aromatics Blended in a Synthetic Jet Fuel. Energy and Fuels. 2006. Vol. 20. No. 2. P. 759-765.

30. DeWitt, M.J. & Corporan, E. & Graham, J. & Minus, D. Effects of Aromatic Type and Concentration in Fischer-Tropsch Fuel on Emissions Production and Material Compatibility. Energy & Fuels. 2008. Vol. .22. No. 4. P. 2411-2418.

31. ТУ 38 005 1166-73:1973. Смеси резиновые для деталей авиационной техники. Технические условия. Прил. № 1. Науч.-исслед. ин-т резиновой пром-сти. Москва. [In Russian: TU 38 005 1166-73: 1973. Rubber compounds for parts of aircraft. Technical conditions. Adj. No. 1. Rubber Industry Research Institute. Moscow].