ALUMINUM ALLOY WELDING IN AUTOMOTIVE INDUSTRY

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

21
Reader(s)
42
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 15 , ISSUE 3 (September 2020) > List of articles

ALUMINUM ALLOY WELDING IN AUTOMOTIVE INDUSTRY

Bożena SZCZUCKA-LASOTA * / Tomasz WĘGRZYN / Adam JUREK

Keywords : mobile platforms; civil engineering, transport; microjet cooling

Citation Information : Transport Problems. Volume 15, Issue 3, Pages 67-78, DOI: https://doi.org/10.21307/tp-2020-034

License : (CC BY 4.0)

Received Date : 23-February-2019 / Accepted: 27-August-2020 / Published Online: 05-September-2020

ARTICLE

ABSTRACT

The paper presents the possibilities of using light alloy components in vehicle construction. Material 6082 was chosen for use in responsible structural components. The structure and strength parameters of the material in the delivery state were tested. Tested material parameters were compared with normative requirements. The purpose of the paper is to check the mechanical properties of aluminum alloy welded joints by various processes and parameters. Until now, welding of 6082 alloy did not give good and repeatable results. Because of that, two welding methods were analyzed (MIG and TIG) in the field of the quality of welds, strength of welded joints, and material structures obtained as a result of welding with various parameters.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Kulekci, M.K. Magnesium and its alloys applications in automotive industry. International Journal of Advanced Manufacturing Technology. 2008. No. 39. P. 851-865.

2. Hirsch, J. Automotive trends in Aluminium - The European perspective. Materials Forum. 2004. Vol. 28. No. 1. P. 15-23.

3. Muraoka, Y. & Miyaoka, H. Development of an all-aluminum automotive body. Journal of Materials Processing Technology. 1993. No. 38. P. 655-674.

4. Kutsuna, M. & Kitamura, S. & Shibata, K. & Sakamoto, H. & Tsushima, K. Improvement of the joint performance in laser welding of aluminium alloys. Welding in the World. 2006. Vol. 50. Nos. 1-2, P. 22-27.

5. AlShaer, A. W. & Li, L. & Mistry A. Effect of filler wire properties on porosity formation in laser welding of AC-170PX aluminium alloy for light-weight automotive component manufacture. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2015. Vol. 231. No. 6. P. 1-13.

6. Arun, N. & Cijo M. & Joby Joseph. Influence of Gas Tungsten Arc welding parameters in Aluminium 5083 alloy. Inter. J. Eng. Sci. Inno. Technol. 2013. Vol. 2. No. 5. P. 269-277.

7. Kumar, A. & Sundarrajan, S. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments. Materials & Design. 2009. Vol. 30. No. 4. P. 1288-1297.

8. Indira, R. M. & Marpu, R.N. Effect of Pulsed Current TIG Welding Parameters on Mechanical Properties of J-Joint Strength of AA6351. The International Journal of Engineering and Science (IJES). 2012. Vol. 1. No. 1. P. 1-5.

9. Lakshman, S. & Rajeshwar, S. & Naveen, K.S. & Davinder S., & Pargat S. An Evaluation of TIG Welding Parametric Influence on Tensile Strength of 5083 Aluminum Alloy. International Scholarly and Scientific Research and Innovation. 2013. Vol. 7. P. 99-107.

10. Yao, L. & Wenjing, W. & Jijia, X. & Shouguang, S & Liang, W. & Yuan, M. & Yujii, W. Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding. Materials Science Engineering. 2012. Vol. 549. P. 7-13.

11. Neuer Audi Space Frame mit hohen Anteilen an Aluminium und CKF. Aluminiumkarosserien. 2015. Vol. 3. Avaliable at: www.audi-technology-portal.com. [In German: New Audi Space Frame with increased content of aluminum and CKF. Aluminum car bodies. Vol. 3].

12. Wadelton, F. Aluminum 7005-6061 custom frames. Bicycle fabrication. Avaliable at: www.frankthewelder.com.

13. Auto news and picture galleries. Available at: http://www.caricos.com.

14. Haboudou, A. & Peyre, P. & Vannes, A. B. & Peix, G. Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminium alloys. Materials Science and Engineering. 2003. Vol. 363. No. 1-2. P. 40-52.

15. Pao, P. S. & Jones H. N. & Cheng S. F. & Feng C. R. Fatigue crack propagation in ultrafine grained Al-Mg alloy. International Journal of Fatigue. 2005. Vol. 27. P. 1164-1169.

16. Cavaliere, P. Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. International Journal of Fatigue. 2009. Vol. 31. P. 1476-1489.

17. Sabirov, I. & Murashkin, M. Y. & Valiev, R. Z. Nano-structured aluminium alloys produced by severe plastic deformation. New horizons in development. Materials Science & Engineering 2013. Vol. 560. P. 1-24.

18. Carpinteri A. & Spagnoli A. Multiaxial high-cycle fatigue criterion for hard metals. International Journal Fatigue. Vol. 23. 2001. P. 135-145.

EXTRA FILES

COMMENTS