THREE- AND FOUR-MASS MODELS FOR VEHICLE FRONT CRUMPLE ZONE

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

26
Reader(s)
53
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 15 , ISSUE 3 (September 2020) > List of articles

THREE- AND FOUR-MASS MODELS FOR VEHICLE FRONT CRUMPLE ZONE

Vaidas LUKOŠEVIČIUS / Robertas KERŠYS * / Artūras KERŠYS / Rolandas MAKARAS / Janina JABLONSKYT

Keywords : crumple zone; lumped mass model; head performance criterion; neck injury criteria

Citation Information : Transport Problems. Volume 15, Issue 3, Pages 79-92, DOI: https://doi.org/10.21307/tp-2020-035

License : (CC BY 4.0)

Received Date : 03-April-2019 / Accepted: 27-August-2020 / Published Online: 05-September-2020

ARTICLE

ABSTRACT

The article deals with the applicability of the three- and four-mass crumple zone models by optimization of the vehicle front crumple zone in case of a collision. The possibilities for integrating the requirements for individual crumple zones are discussed. The crumple model for special crumple zone elements has been proposed. Optimum parameter limits for the deformable elements have been identified, and complex influence of the damping elements used has been demonstrated. The need for adjustment of the optimization process for different vehicle load has been identified. The article analyzes the requirements applicable to the front crumple zone of a light passenger vehicle in case of a front collision by employing simple models.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Official Journal of the European Communities. Directive 96/79/EC of the European Parliament and of the Council of 16 December 1996 on the protection of occupants of motor vehicles in the event of a frontal impact and amending Directive 70/156/EEC. 1997. Vol. 40. 50 p.

2. Рябчинский, А.И. Пассивная безопасность автомобиля. Москва. Машиностроение. 1983. 145 с. [In Russian: Ryabchinsky, A.I. Passive car safety. Moscow. Machinostrojenije. 1983. 145 p.].

3. Афанасьев, Л.Л. & Дьяков, А.Б. & Иларионов, В.А. Конструктивная безопасность автомобиля. Москва. Машиностроение. 1983. 212с. [In Russian Afanasyev, L.L. & Dyakov, A.B. & Ilarionov, V.A. Structural car safety. Moscow. Machinostrojenije. 1983. 212 p.].

4. Deb, A. & Biswas, U. & Chou, C. HIC(d) and Its Relation with Headform Rotational Acceleration in Vehicle Upper Interior Head Impact Safety Assessment. SAE Int. J. Passeng. Cars - Mech. Syst. 2009. Vol. 1(1). P. 142-149. DOI: 10.4271/2008-01-0186.

5. Yamaguchi, S. & Taneda, K. Current Status of Correlation Between CTP and FST. Proc. of the 13th Inter. Technical Confer. on Experimental Safety Vehicles. Paris, France. November 4-7, 1991. 720 p.

6. Wicher, J. Bezpieczeństwo samochodów i ruchu drogowego. [In Polish: Car and road traffic safety]. Warsaw. WKiŁ. 2002. 276 p.

7. Seiffert, U. & Wech, L. Automotive Safety Handbook. Warrendale, SAE International. 2007. 306 p.

8. Fenton, J. 1998. Handbook of Automotive Body Construction and Design Analysis. London, Professional Engineering Publishing. 455 p. Huang, Matthew. 2002. Vehicle crash mechanics. CRC press, 481 p.

9. Executive Cars Crash Test Results. 1998. The European Bureau of the Alliance Internationale de Tourisme & Federation de L’Automobile. Brussels, Euro NCAP September. 28p.

10.Huang, M. Vehicle crash mechanics. CRS press. 2002. 481 p.

11.Pahlavani, M. & Marzbanrad, J. Crashworthiness study of a full vehicle-lumped model using parameters optimisation. International Journal of Crashworthiness. 2015. Vol 20. No 6. P. 573- 591. DOI: 10.1080/13588265.2015.1068910.

12.Ofochebe, S.M. & Ozoegwu, C.G. & Enibe, S.O. Performance evaluation of vehicle front structure in crash energy management using lumped mass spring system. Advanced Modeling and Simulation in Engineering Sciences. 2015. Vol. 2. No 1. P. 2. DOI: 10.1186/s40323-015-0020-1.

13.Pawlus, W. & Reza, K.H. & Robbersmyr, K. Development of lumped-parameter mathematical models for a vehicle localized impact. Journal of Mechanical Science and Technology. 2011. Vol. 25. P. 1737-1747. DOI: 10.1007/s12206-011-0505-x.

14.Munyazikwiye, B. Optimization of Vehicle-to-Vehicle Frontal Crash Model Based on Measured Data Using Genetic Algorithm. IEEE Access. 2017. Vol. 5. P. 3131-3138.

15.Wierzbicki, T. & Abramowicz, W. On the crushing mechanics of thin-walled structures. Journal of Applied Mechanics. 1983. Vol. 50. P. 727-734. DOI: 10.1115/1.3167137.

16.Lawrence, G.J.L., etc. Bonnet Leading Edge Sub-Systems Test for Cars to Assess. Proc. for the 13th Inter. Technical Confer. on Experimental Safety Vehicles. Paris. France. November 4-7, 1991. 720 p.

EXTRA FILES

COMMENTS