THEORETICAL BASES OF IMPREGNATION WITHOUT PRESSURE OF MELIORANTS AND THE APPLICATION OF THEIR FEATURES IN PRACTICE OF FIXING MOBILE SANDS

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics , Transportation , Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

4
Reader(s)
12
Visit(s)
0
Comment(s)
0
Share(s)

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue / page

Related articles

VOLUME 15 , ISSUE 4, Part 1 (December 2020) > List of articles

THEORETICAL BASES OF IMPREGNATION WITHOUT PRESSURE OF MELIORANTS AND THE APPLICATION OF THEIR FEATURES IN PRACTICE OF FIXING MOBILE SANDS

Makhamadjan MIRAKHMEDOV *

Keywords : sand deflation; consolidation; physic-chemical method; impregnation; protective crust; capillary forces; gravitational forces; solvation layer; humidity; specific consumption; concentration

Citation Information : Transport Problems. Volume 15, Issue 4, Part 1, Pages 39-48, DOI: https://doi.org/10.21307/tp-2020-046

License : (CC BY 4.0)

Received Date : 15-April-2019 / Accepted: 25-November-2020 / Published Online: 31-December-2020

ARTICLE

ABSTRACT

Desert sand is subject to deflation, which during the construction and operation of railways in the sandy desert leads to the filling of the railway track with sand and erosion of subgrade. To prevent this phenomenon, the surface of the sand is fixed with a binder, which is sprayed onto a deflated surface. The penetration of the working composition of the binder due to the characteristics of grinding is accompanied by an uneven distribution of the substance, which is proposed to characterize the saturation coefficient. Peculiarities of the interaction of the binder and sand from which the protective crust is formed are revealed, which made it possible to change the nature of the impregnation. Pre-wetting allows to reduce the pore space of sand, change the nature of the transfer of the substance when impregnated into the capillary, and increase the uniformity of impregnation, which as a result allows to obtain a resource-saving solution when fixing the movement of sand.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Laity, Julie J. Deserts and Desert Environments: Volume 3 of Environmental Systems and Global Change Series. John Wiley & Sons. 2011. No. 49. P. 2-7. ISBN: 978-1-4443-0074-1.

2. Pye, K. & Tsoar, H. Aeolian Sand and Sand Dunes/ Springer, 2009. DOI: 10.1007/978-3-540-85910-9.

3. Dong, Z. & Chen, G. & He, X. & Han, Z. & Wang, X. Controlling blown sand along the highway crossing the Taklimakan Desert. J. Arid Environ. 2004. No. 57. P.329-344. DOI: 10.1016/j.jaridenv.2002.02.001.

4. Han, Z. & Dong, Z. & Wang, T. & Chen, G. & Yan, Ch. & Yao, Z. Observations of several characteristics of aeolian sand movement in the Taklimakan Desert. Science in China Series D: Earth Sciences. January 2004. Vol. 47. No. 1. P. 86-96.

5. Jabbar Ali Zakeri. Investigation on railway track maintenance in sandy-dry areas. Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance. 2012. Vol. 8. No. 2. P. 135-140.

6. Hagdorn, M. & Busche, D. & Draga, M. Les sables éoliens, modelés et dinamique. La menace éolienne et son contréle. Bibliographie annotée. Deutsche. GesTechnZusammenarbeit (GTZ). Schiftereibe. Vol. 122. 1984. No. 1. 758 p.

7. Khalaf, F.I. & Al-Ajmi, D. A eolian processes and sand encroachment problems in Kuwait. Kuwait Institute for Scientific Research. Geomorphology. 1993. Vol. 6. No. 2. P. 111-134.

8. Heffernan, M. (2010) Engineering Earth - the Impacts of Mega engineering Projects. Springer Netherlands. Chapter Shifting Sands: the Trans-saharan Railway. DOI: 10.1007/978-90-481-9920-4.

9. Raffaele, L. & Bruno, D. & Fransos, F. PellereyIncoming windblown sand drift to civil infrastructures: a probabilistic evaluation. J. Wind Eng. Industrial Aerodynamics. 2017. No. 166. P. 37-47. DOI: 10.1016/j.jweia.2017.04.004.

10.Plaza, J.S. & Barcel, M.L. & P.R. de Lema Tapetado. Sand and wind: an outline of the study of éolian action on infrastructure with reference to Haramain high speed railway, Makkah-AlMadinah. Rev. Obras Publicas, 2012. No. 159. P. 7-36. Available at: http://ropdigital.ciccp.es/detalle_articulo.php?registro=19202&anio=2012&numero_revista=3537.

11. Zakeri, J.A. & Forghani, M. Railway Route Design in Desert Areas. American Journal of Environmental Engineering. 2012. Vol. 2. No. 2. P. 13-18. DOI: 10.5923/j.ajee.20120202.03.

12. Hewitt, T. Designing a heavy haul desert railway: lessons learned. In: 11th International Heavy Haul Conference, (IHHA 2015). Operational Excellence. Perth, Western Australia. P. 228-237.

13. Rail - первая железная дорога ОАЭ. Железные дороги мира. № 6. 2016. [In Russian: Rail - UAE's first railway. World Railways. 2016. No. 6. Available at: http://railknowledgebank.com/Presto/content/Detail.aspx.

14. Freer, R.J. & Hewish, F. & Ghataora, G.S. & Niazi, Y. Stabilization of desert sand with cement kiln dust plus chemical additives in desert road construction. In: Proceedings of the ICE - Transport. 1999. Vol. 135. No. 1. P.29-36.

15.Kok, J.F. & Parteli, E.J.R & Michaels, T.I. & Karam, D.B. The physics of wind-blown sand and dust. Rep. Prog. Phys. No 75. 2012. P. 106901. DOI: 10.1088/0034-4885/75/10/106901.

16.Mirakhmedov, M.M. & Muzaffarova, M. Methodological aspects of the development of resourcesaving technologies of shifting sands fixation. In: 19 Internationale. Weimar: Bauhaus-Universität. 2015. P. 2-1203 – 2-1209.

17.Мирахмедов, М. Основы методологии организации пескозакрепительных работ и защита природно-технических объектов от песчаных заносов. Ташкент: Фан ва технологиялар. 2016. 248 с. [In Uzbekistan: Mirakhmedov, M. Fundamentals of the methodology of organizing work on fixing sand and protecting natural and technical objects from sand drifts. Tashkent: Science and technology].

18.Mirakhmedov, M. & Muzaffarova, M. Integrated Solution to the Problem of Resource-Saving Fixing of Moving Sands. Civil Eng Res J. 2019. Vol. 7. No. 5. P. 555723. DOI: 10.19080/CERJ.2019.07.555723.

19.Лыков, А.В. Тепломассообмен. 2-е изд., перераб. и доп. Москва: Энергия, 1978. 480 с. [In Russia: Lykov, A.V. Heat and mass transfer. 2nd ed., Moscow: Energy].

20.Зотов, К.В. & Кучурина, Т.Н. Основы моделирования массопереноса в пористой среде. Учебное пособие. Часть 1. СпбГУ. 2014. 34 с. [In Russian: Zotov, K.V. & Kuchurina, T.N. Fundamentals of modeling mass transfer in a porous medium. Tutorial. Part 1. St. Petersburg State University].

21. Pabst, W. & Gregorova, E. Characterization of particles and particle systems. ICT Prague. 2007. 122 p.

22. L'eau et les sols - Hydrodynamique des milieux poreux. Available at: https://www.edx.org/course/leau-et-les-sols-hydrodynamique-des-milieux-poreux.

23.Reichardt, K. & Timm, L.C. & Dourado-Neto, D. The recent similarity hypotheses to describe water infiltration into homogeneous soils. Scientia Agricola. 2016. Vol. 73. No. 4. Piracicaba, Brazil. Available at: http://dx.doi.org/10.1590/0103-9016-2015-0364.

24.Cheremisinoff, N.P. Liquid Filtration. Butterworth-Heinemann. 28.07.1998. 319 p. Available at: https://books.google.com/books/about/Liquid_Filtration.html.

25.Nicholas, P. Cheremisinoff. Liquid Filtration. Butterworth-Heinemann. 28 Juet 1998. 319 p. Available at: https://books.google.com/books/about/Liquid_Filtration.html.

26.Takahiro Nomura, Noriyuki Okinaka, Tomohiro Akiyama. Impregnation of porous material with phase change material for thermal energy storage. Materials Chemistry and Physics. 15 June 2009. Vol. 115. Issue 2-3. P. 846-850. Available at: https://doi.org/10.1016/j.matchemphys.2009.02.045.

27. Kerr, R.C. & Nigra, J.O. Eolian Sand Control. Arabian American Oil Company. 1952.

28. Lima, I.A. & Araújo, A.D. & Parteli, E.J.R. & Andrade, J.S. & Herrmann, H.J. Optimal array of sand fences. Scientific Reports.2017. No 7. P. 45148.

29.Chen, L. & Zuoming, X. & Chunxiang, H. & Dunhai, L. Man-made desert algal crusts as affected by environmental factors in Inner Mongolia, China. Journal of Arid Environments. 2006. Vol. 67. No. 3. P.521-527.

30. Zhou, X. & Zhao, Y. & Belnap, J. & Zhang, B. & Bu, C. & Zhang, Y. Practices of biological soil crust rehabilitation in China: experiences and challenges. Restoration Ecology. Pub Date: 2020-03- 31. DOI: 10.1111/rec.13148doi:10.1111/rec.13148.

31. Мирахмедов, М. Закрепление подвижных песков тяжелыми нефтями. Автореф. дисс. канд. техн. наук. Ташкент: 1975. ТПИ. 49 с. [In Russian: Mirakhmedov, M. Consolidation of mobile sands with heavy oils. Thesis of diss. for the degree of candidate of technical sciences. Tashkent: 1975. TPI].

EXTRA FILES

COMMENTS