APPLICATION OF LOCAL EXHAUST SYSTEMS TO REDUCE POLLUTION CONCENTRATION NEAR THE ROAD

Publications

Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics , Transportation , Transportation Science & Technology

GET ALERTS

eISSN: 2300-861X

DESCRIPTION

7
Reader(s)
17
Visit(s)
0
Comment(s)
0
Share(s)

VOLUME 15 , ISSUE 4, Part 1 (December 2020) > List of articles

APPLICATION OF LOCAL EXHAUST SYSTEMS TO REDUCE POLLUTION CONCENTRATION NEAR THE ROAD

Mykola BILIAIEV / Oleksandr PSHINKO / Tetiana RUSAKOVA * / Viktoriia BILIAIEVA / Aleksander SŁADKOWSKI

Keywords : automobile transport; pollution concentration; two-level exhaust system

Citation Information : Transport Problems. Volume 15, Issue 4, Part 1, Pages 137-148, DOI: https://doi.org/10.21307/tp-2020-055

License : (CC BY 4.0)

Received Date : 03-July-2019 / Accepted: 27-November-2020 / Published Online: 31-December-2020

ARTICLE

ABSTRACT

In this study, the methodological foundations of the technology for the local reduction of chemical pollution from vehicles were improved through the use of twolevel suction units and guide plates of various lengths installed on the nozzles of the suction devices. A program has been developed for the numerical calculation of the carbon monoxide concentration field for evaluating the efficiency of using two-level exhaust systems with different lengths of guide plates on the gas flow selection pipes. The solution of the equations of hydrodynamics and mass transfer is carried out on the basis of finite-difference methods. A number of physical and computational experiments have been carried out; it has been established that the concentration of carbon monoxide in the zone of two-level suctions location decreases by 46-68%.

Content not available PDF Share

FIGURES & TABLES

REFERENCES

1. Moccia, L. & Giallombardo, G. & Laporte, G. Models for technology choice in a transit corridor with elastic demand. Transportation Research Part B: Methodological. 2017. Vol. 104. P. 733-756.

2. Leurent, F. & Li, S. & Badia, H. Structural design of a hierarchical urban transit network integrating modal choice and environmental impacts. Transportation Research Procedia. 2019. Vol. 37. P. 99-106.

3. Byshov, N.V. & Bachurin, A.N. & Bogdanchikov, I.Y. & Oleynik, D.O. Method and device for reducing the toxicity of diesel engine exhaust gases. International Journal of Engineering & Technology. 2018. Vol. 7. No. 4. P. 920-928.

4. Sassykova, R. & et al. The main components of vehicle exhaust gases and their effective catalytic neutralization. Oriental Journal of Chemistry. 2019. Vol. 35. No. 1. P. 110-127.

5. Wästberg, B.S. & et al. How to visualize the invisible simulating air pollution dispersions in a 3D city model. In: 13th International Conference on Computers in Urban Planning and Urban Management. At Utrecht, Netherlands, Vol. Proceedings for CUPUM 2013. P. 1-4.

6. Grundström, M. & Pleijel, H. Limited effect of urban tree vegetation on NO2 and O3 concentrations near a traffic route. Environmental Pollution. 2014. Vol. 189. P. 73-76.

7. Liu Ch.-H. & Leung, D.Y.C. Numerical study on the ozone formation inside street canyons using a chemistry box model. Journal of Environmental Sciences. 2008. No. 20. P. 832-837.

8. Klingberg, J. & et al. Mapping leaf area of urban greenery using aerial LiDAR and ground-based measurements in Gothenburg, Sweden. Urban Forestry & Urban Greening. 2017. Vol. 26. P. 31-40.

9. Gromke, C. & Buccolieri, R. & Sabatino, S.D. & Ruck, B. Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations – Evaluation of CFD data with experimental data. Atmospheric Environment. 2008. Vol. 42. No. 37. P. 8640-8650.

10. Wonsik, C. & Shishan, Hu & Meilu, He & Kozawa, K. Spatial Heterogeneity of Roadway Pollutant in Los Angeles. Available at: http://www.aqmd.gov/docs/defaultsource/technology research/TechnologyForums/near-road-itigationmeasures/near_road_mitigation-agendapresentations.pdf.

11. Bruno, L. & Fransos, D. & Lo Giudice, A. Solid barriers for windblown sand mitigation: Aerodynamic behavior and conceptual design guidelines. Journal of Wind Engineering & Industrial Aerodynamics. 2018. No. 173. Р. 79-90.

12. Beeldens, A. & Cassar, L. & Murata, Y. Applications of TiO2 photocatalysis for air purification. In: Ohama Y. & Van Gemert D. (Eds.). Application of Titanium Dioxide Photocatalysis to Construction Materials (1st ed.). Springer. 2011.

13. Hüsken, G. & Hunger, M. & Brouwers, H.J.H. Experimental study of photocatalytic concrete products for air purification. Building and Environment. 2009. Vol. 44. No. 12. P. 2463-2474.

14. Sikkema, J.K. Photocatalytic degradation of NOx by concrete pavement containing TiO2. In: Graduate Theses and Dissertations. 13486. Available at: http://lib.dr.iastate.edu/etd/13486.

15. Мягков, М.С. & Алексеева, Л.И. Особенности ветрового режима типовых форм городской застройки. Архитектура и современные информационные технологии (AMIT). 2014. Vol. 1. No. 26. P. 1-15. [In Ukrainian: Myagkov, M.S. & Alekseeva, L.I. Features of the wind regime of typical forms of urban development. Architecture and Modern Information Technology (AMIT)].

16. Blocken, B. & Persoon, J. Pedestrian wind comfort around a large football stadium in an urban environment: CFD simulation, validation and application of the new Dutch wind nuisance standard. Journal of Wind Engineering and Industrial Aerodynamics. 2009. Vol. 97. No. 5-6. P. 255-270.

17. Franke, J. & Hirsch, C. & Jensen, A.G. Recommendations on the use of CFD in wind engineering. Journal of Wind Engineering and Industrial Aerodynamics. 2004. Vol. 81. No. 1-3. P. 295-309.

18. Mohamed, S. F. & Karadelis, J. CFD Simulation for wind comfort and safety in urban area: a case study of coventry university central campus. International Journal of Architecture, Engineering and Construction. 2013. Vol. 2. No. 2. P. 131-143.

19. Paterson, D.A. & Apelt, C.J. Computation of wind flows over three-dimensional buildings. Journal of Wind Engineering and Industrial Aerodynamics. 1986. Vol. 24. No. 3. P. 193-213.

20. Solodov, V. Problem of aerodynamic interaction of traffic streams. Transport Problems. 2020. Vol. 15. No. 2. P. 133-142.

21. Біляєв, М.М. & Русакова, Т.І. Способи зменшення рівня інтоксикації працівників в робочих зонах біля автомагістралі. Збірник наукових праць Національного гірничого університету. 2018. Vol. 56. P. 231-240. [In Ukrainian: Biliaiev, M.M. & Rusakova, T.I. Ways of reducing the intoxication level of employees in work areas near the road. Proc. of Scientific Works of the National Mining University].

22. Біляєв, М.М. & Русакова, Т.І. Зниження рівня загазованості повітряного середовища. Геотехнічна механіка: Міжвідомчий збірник наукових праць. 2018. Vol. 139. P. 135-144. [In Ukrainian: Biliaiev, M.M. & Rusakova, T.I. Reducing of gas concentration in the air environment. Geotechnical Mechanics: Interdisciplinary Collection of Scientific Workers].

23. Самарский, А.А. & Михайлов, А.П. Математическое моделирование. Москва: Физмат лит. 2001. 320 p. [In Ukrainian: Samarsky, A.A. & Mikhailov, A.P. Mathematical Modeling. Moscow: Fizmatlit].

24. Згуровский, М.З. & Скопецкий, В.В. & Хрущ, В.К. & Беляев, Н.Н. Численное моделирование распространения загрязнения в окружающей среде. Київ: Наукова думка. 1997. 368 p. [In Ukrainian: Zgurovsky, M.Z. & Skopetsky, V.V. & Khrushch, V.K. & Biliaiv, M.M. Numerical modeling of the spread of pollution in the environment. Kiev: Naukova dumka].

EXTRA FILES

COMMENTS