Share / Export Citation / Email / Print / Text size:

Transport Problems

Silesian University of Technology

Subject: Economics, Transportation, Transportation Science & Technology


eISSN: 2300-861X



VOLUME 16 , ISSUE 2 (June 2021) > List of articles


Piotr FOLĘGA / Maciej IRLIK *

Keywords : railway; signalling; ETCS, ATP; capacity

Citation Information : Transport Problems. Volume 16, Issue 2, Pages 59-72, DOI: https://doi.org/10.21307/tp-2021-023

License : (CC BY 4.0)

Received Date : 12-January-2020 / Accepted: 07-May-2021 / Published Online: 24-June-2021



Over the recent years, an increase in the demand for passenger and freight rail transport services has been observed. This is mainly owing to the policy objectives related to the use eco-friendly means of transport and the investment causing the quality of rail services to grow. Along with the growing demand for rail transport, a problem of railway capacity utilisation has emerged. Although the implementation of the new Automatic Train Protection (ATP) system increases the safety level, but under some scenarios, it may decrease the headways between trains. At the same time, the ATP systems enables train positioning based on odometry calculation and reporting it to the trackside system. This paper proposes a solution that involves application of virtual block sections which use the train position reporting feature of the ATP system for the determination of non-occupancy. Virtual blocks can successfully reduce headways in railway lines without increasing the number of trackside signalling devices. The capacity assessment proposed under the study was performed to calculate the average headway depending on the signalling system configuration.

Content not available PDF Share



1. Dolinayova, A. & Zitricky, V. & Cerna, L. Decision-making process in the case of insufficient rail capacity. Sustainability. 2020. Vol. 12.

2. Krajowy Plan Wdrażania Technicznej Specyfikacji Interoperacyjności "Sterowanie". Warszawa: Ministerstwo Infrastruktury i Budownictwa. 2017. Available at: http://utk.gov.pl/download/1/48211/KrajowyPlanWdrazaniaTechnicznejSpecyfikacjiInteroperacyj nosciSterowaniezczerwca2.pdf. [In Polish: National Plan for Implementation of the Technical Specification for Interoperability relating to the ‘control-command and signalling’ subsystem. Warsaw: Ministry of Infrastructure and Construction].

3. Irlik, M. Kontrola przejazdu przy implementacji ERTMS/ETCS poziomu 2 na liniach kolejowych z ruchem mieszanym. Prace Naukowe Politechniki Warszawskiej - Transport. 2018. Vol. 123. P. 33-39. [In Polish: Passage control in ERTMS/ETCS Level 2 implementation on railway lines with mix-traffic. WUT Journal of Transportation Engineering].

4. Ie-4 (WTB-E10). Wytyczne techniczne budowy urządzeń sterowania ruchem kolejowym. Warszawa: PKP PLK S.A. [In Polish: Technical guideline for the construction of railway signaling devices. Warsaw: PKP PLK S.A.].

5. Hougardy, A. Introduction to ETCS braking curves, ERA_ERTMS_040026, European Railway Agency. 2016.

6. SUBSET-026 System Requirements Specification v. 3.6.0. UNISIG.

7. Nachtigal, P. & Ouředníček, J. Wider aspects of deceleration supervision in ERTMS/ETCS. In: 10th International Scientific Conference Horizons of Railway Transport. 2018. Slovakia. Vol. 235. Article number: 00010.

8. Landex, A. & Jensen, L. W. Infrastructure capacity in the ERTMS signaling system. In: 8th International Conference on Railway Operations Modelling and Analysis – Rail Norrkoping. Norrkoping. Sweden. 2019. P. 607-622.

9. Hassan, A.H. & Nicholson, G.L. & Roberts, C. Impact of train positioning inaccuracies on railway traffic management systems: framework development and impacts on TMS functions. IET Intelligent Transport Systems. 2020. Vol. 14. Issue 6. P. 534-544.

10. Dąbrowa-Bajon, M. Podstawy sterowania ruchem kolejowym: funkcje, wymagania, zarys techniki. Wydanie III popr. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej. 2014. 391 p. [In Polish: Fundamentals of rail traffic control: functions, requirements, technical outline. Warsaw: Publishing House of the Warsaw University of Technology].

11. Goverde, R.M.P. & Corman, F. & D’Ariano, A. Railway line capacity consumption of different railway signalling systems under scheduled and disturbed conditions. Journal of Rail Transport Planning & Management. 2013. Vol. 3. No. 3. P. 78-94.

12. Goverde, R.M P. & Bešinović, N. Capacity assessment in railway networks. International Series in Operations Research and Management Science. 2018. Vol. 268. P. 25-45.

13. Żurkowski, A. Metody obliczania zdolności przepustowej linii szybkiego ruchu. Logistyka. 2015. Vol. 4. P. 7129-7135. [In Polish: Methods of calculating the capacity for high-speed lines. Logistics].

14. Song, T. & Tang, T. & et al. Train headway adjustment using potential function based on multiagent formation control. In: 2018 International Conference on Intelligent Rail Transportation (ICIRT). Singapore.

15. Vignali, V. & Cuppi, F. & Lantieri, C. & et al. A methodology for the design of sections block length on ETCS L2 railway networks. Journal of Rail Transport Planning & Management. 2020. Vol. 13. Article number 100160.

16. Zhao, N. Railway traffic flow optimisation with differing control systems. PhD thesis. 2013. Available at: https://etheses.bham.ac.uk/id/eprint/4725/1/Zhao13PhD.pdf.

17. Rosell, F. & Codina, E. A model that assesses proposals for infrastructure improvement and capacity expansion on a mixed railway network. Transportation Research Procedia. 2020. Vol. 47. P. 441-448.

18. Gao, H. & Zhang, Y.-D. & Guo, J. Calculation and optimization of minimum headway in moving block system. Journal of Transportation Systems Engineering and Information Technology. 2020. Vol. 20. No. 6. P. 170-177 and 204.

19. Diaz De Rivera, A. & Dick, C.T. & Evans, L.E. Potential for moving blocks and train fleets to enable faster train meets on single-track rail corridors. Journal of Transportation Engineering Part A: Systems. 2020. Vol. 146. No. 8. Article number 04020077.

20. Ates, E. & Ustoglu, I. An approach for moving block signalling system and safe distance calculation. In: 6th International Conference on Control Engineering & Information Technology (CEIT). Istanbul, Turkey. 2018.

21. Hansen, D. & Leuschel M. & et al. Validation and real-life demonstration of ETCS hybrid level 3 principles using a formal B model. International Journal on Software Tools for Technology Transfer. 2020. Vol. 22. P. 315-332.